

IFT 203
INTRODUCTION TO WEB TECHNOLOGIES

Course Team Dr. Awotunde J. B. (Course Developer/Writer)-UI
 Prof Peter Ogedebe (Course Editor)-
 Base University, Abuja

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE
GUIDE

IFT 203 COURSE GUIDE

ii

© 2025 by NOUN Press
National Open University of Nigeria
Headquarters
University Village
Plot 91, Cadastral Zone
Nnamdi Azikiwe Expressway
Jabi, Abuja

Lagos Office
14/16 Ahmadu Bello Way
Victoria Island, Lagos

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

All rights reserved. No part of this book may be reproduced, in any
form or by any means, without permission in writing from the publisher.

Printed 2025

ISBN: 978-978-786-487-6

IFT 203 COURSE GUIDE

iii

CONTENTS

Introduction ……………………………………………………….. iv
Course Competencies……………………………………………… iv
Course Objectives………………………………………………….. iv
Working Through this Course……………………………………… v
Study Units…………………………………………………………. v
References and Further Readings…………………………………... vii
Presentation Schedule……………………………………………….vii
Assessment…………………………………………………………..vii
How to Get the Most from the Course………………………………viii
Facilitation…………………………………………………………..ix
Course Information ………………………………………………….x

IFT 203 COURSE GUIDE

iv

Introduction

IFT 203 – Introduction to Web Technologies is a two-credit unit
course. It deals with the introduction of the Internet, the World Wide
Web (WWW), and Web development. WWW is a platform for
interactive applications, content publishing, and social services. The role
of HTTP and HTTPS in the context of web applications. Roles and
operations of web browsers and the web server. Interacting with web
applications through forms, and using style sheets to separate document
structure and document formatting.

Course Competencies

This course equips students with foundational skills in web development
and design. Key competencies include understanding the basic
principles of the internet and web technologies, proficiency in HTML
and CSS for creating and styling web pages, and an introduction to
JavaScript for adding interactivity. Additionally, the course covers web
standards and best practices, responsive design techniques, and an
awareness of accessibility considerations. Students will also learn about
web hosting, domain names, and basic SEO principles, enabling them to
create functional, user-friendly websites from scratch.

Course Objectives

Certain objectives have been set out to ensure that the course achieves
its aims. Apart from the general objectives of this course, each unit of
this course has set objectives. At the end of this course, you should be
able to:
• discuss the evolution of the Internet and explain the meaning of

Intranet and extranet
• list the devices used to access the Internet and explain the various

means of accessing the Internet • differentiate between static and
dynamic pages

• describe the term “computer network,” discuss the client-server
model, and describe the Web application architecture

• explain the term “HTML,” write simple HTML codes using
popular tags, and use Web browsers to display HTML codes

• explain the term “XHTML,” write simple HTML5 codes using
popular tags, and use Web browsers to display XTML codes

• outline how to create, modify, process, view, and validate XML
document

• comprehend how the internet works, including protocols such as
HTTP and HTTPS.

• understand the client-server model and the role of web browsers
and servers.

IFT 203 COURSE GUIDE

v

• gain proficiency in HTML for structuring web content.
• master CSS for styling and layout of web pages.
• implement responsive design techniques using CSS media

queries.
• Learn about W3C standards and their importance in web

development.
• understand the principles of clean, semantic HTML and CSS

coding.
• Discuss the importance of CSS, use CSS format web pages, and

add CSS to HTML files
• explain the meaning of JavaScript
• Write and run simple JavaScript programs

Working Through this Course

This course provides an overview of the fundamental concepts and
technologies that drive the World Wide Web. Students will gain
practical experience in web development, learning how to create and
manage web content, understand web protocols, and work with various
web technologies. Topics include HTML, CSS, JavaScript, web hosting,
and basic principles of web design and user experience (UX). To have a
thorough understanding of the course units, you will need to read and
understand the contents, practice what you have learned by studying and
developing simple websites and Web applications for your organization,
and be committed to learning and using skills acquired from the course
to enhance your career.

Study Units
This course has four modules broken down into fifteen (15) study units.
They are listed as follows:

Module 1 Introduction to the World Wide Web

Unit 1 History of the Internet and the Web
Unit 2 Understanding Web Browsers
Unit 3 Internet Services, Communication and Protocol
Unit 4 Network model and web application development

Module 2 HTML Fundamentals

Unit 1 Introduction to HTML
Unit 2 HTML tags and attributed
Unit 3 HTML syntax and basic markup: headings, paragraphs,
 lists, links
Unit 4 Advanced HTML Markup

IFT 203 COURSE GUIDE

vi

Module 3 Cascading Style Sheet (CSS)Basics

Unit 1 Introduction to Cascading Style Sheet
Unit 2 Styling with Cascading Style Sheet

Module 4 Introduction to JavaScript

Unit 1 Basics of JavaScript
Unit 2 Fundamentals of JavaScript for Dynamic Statements
Unit 3 Document Object Model (DOM) Manipulation

References and Further Readings

Duckett, J. (2011). HTML & CSS: design and build websites (Vol. 15).

Indianapolis, IN, USA:: Wiley.

Duckett, J. (2014). Javascript and jquery: Interactive front-end web

development. Wiley Publishing.

Robbins, J. N. (2012). Learning web design: A beginner's guide to

HTML, CSS, JavaScript, and web graphics. " O'Reilly Media,
Inc.".

Haverbeke, M. (2018). Eloquent javascript: A modern introduction to

programming. No Starch Press.

Frain, B. (2012). Responsive web design with HTML5 and CSS3. Packt

Publishing Ltd.

Frain, B. (2015). Responsive web design with HTML5 and CSS3. Packt

Publishing Ltd.

Felke-Morris, T. (2015). Web development and design foundations with

HTML5 (p. 672). Pearson education limited.

Sorathiya, D. (2014). Learn java script. Dharm Sorathiya.

Nixon, R. (2014). Learning PHP, MySQL & JavaScript: With jQuery,

CSS & HTML5. " O'Reilly Media, Inc.".

Idowu, S.A., Maitanmi, S.O. & Adetunji, O. O. (2020). Introductory to

Web Technology and Development. Nigeria: Jamiro Press.

Nagpal, D. P. (2006). Web Design Technology, Theory and Technique

on the Cutting Edge. New Delhi, India: S. Chand and Company
Ltd.

IFT 203 COURSE GUIDE

vii

Shklar, L. & Rosen, R. (2009). Web Application Architecture,
Principles, Protocols and Practices. England: John Wiley & Sons
Ltd.

Wang, P., & Katila, S. (2003). An Introduction to Web Design and

Programming. Brooks/Cole book/

Nolan, H. (2005). Creating a Web Page in Dreamweaver. USA:

Peachpit Press, Berkeley.

MacDonald, M. (2013). HTML5: The missing manual. " O'Reilly

Media, Inc.".

Presentation Schedule

The presentation schedule included in your course materials gives you
the important dates for the completion of tutor-marked assignments and
attending tutorials. Remember, you are required to submit all your
assignments by the due date. You should guard against lagging in your
work.

Assessment

There are two aspects to the assessment of the course. First are the tutor-
marked assignments; second is a written examination. In tackling the
assignments, you are expected to apply information and knowledge
acquired during this course. The assignments must be submitted to your
tutor for formal assessment following the deadlines stated in the
Assignment File. The work you submit to your tutor for assessment will
count for 30 percent of your total course mark. At the end of the course,
you will need to sit for a final three-hour examination. This will also
count for 70 percent of your total course mark.

How to Get the Most from the Course

In distance learning, the study units replace the university lecturer. This
is one of the great advantages of distance learning; you can read and
work through specially designed study materials at your own pace, and
at a time and place that suit you best. Think of it as reading the lecture
instead of listening to a lecturer. In the same way that a lecturer might
set you some reading to do, the study units tell you when to read your
textbooks or other material. Just as a lecturer might give you an in-class
exercise, your study units provide exercises for you to do at appropriate
points.

IFT 203 COURSE GUIDE

viii

Each of the study units follows a common format. The first item is an
introduction to the subject matter of the unit and how a particular unit is
integrated with the other units and the course as a whole. Next is a set of
learning objectives. These objectives enable you to know what you
should be able to do by the time you have completedthe unit. You
should use these objectives to guide your study. When you havefinished
the units, you must go back and check whether you have achieved the
objectives. If you make a habit of doing this, you will significantly
improve your chances of passing the course.
Remember that your tutor’s job is to assist you. When you need help, do
not hesitate to call and ask your tutor to provide it.
1. Read this Course Guide thoroughly.
2. Organize a study schedule. Refer to the „Course Overview‟ for

more details. Note the time you are expected to spend on each
unit and how the assignments relate to the units. Whatever
method you chose to use, you should decide on it and write in
your dates for working on each unit.

3. Once you have created your study schedule, do everything you
can to stick to it. The major reason that students fail is that they
lag in their coursework.

4. Turn to Unit 1 and read the introduction and the objectives for the
unit.

5. Assemble the study materials. Information about what you need
for a unit is given in the „Overview‟ at the beginning of each
unit. You will almost always need both the study unit you are
working on and one of your sets of books on your desk at the
same time.

6. Work through the unit. The content of the unit itself has been
arranged to provide a sequence for you to follow. As you work
through the unit, you will be instructed to read sections from your
set books or other articles. Use the unit to guide your reading.

7. Review the objectives for each study unit to confirm that you
have achieved them. If you feel unsure about any of the
objectives, review the study material or consult your tutor.

8. When you are confident that you have achieved a unit’s
objectives, you can then start on the next unit. Proceed unit by
unit through the course and try to pace your study so that you
keep yourself on schedule.

9. When you have submitted an assignment to your tutor for
marking, do not wait for its return before starting on the next unit.
Keep to your schedule. When the assignment is returned, pay
particular attention to your tutor's comments, both on the tutor-
marked assignment form and written on the assignment. Consult
your tutor as soon as possible if you have any questions or
problems.

10. After completing the last unit, review the course and prepare

IFT 203 COURSE GUIDE

ix

yourself for the final examination. Check that you have achieved
the unit objectives (listed at the beginning of each unit) and the
course objectives (listed in this Course Guide).

Facilitation

There are 12 hours of tutorials provided in support of this course. You
will be notified of the dates, times, and locations of the set tutorials,
together with the name and phone number of your tutor, as soon as you
are allocated a tutorial group. Do not hesitate to contact your tutor by
telephone, e-mail, or discussion board if you need help. You will benefit
a lot by doing that. Contact your tutor if:
• You do not understand any part of the study units or the assigned

readings
• You have difficulty with the self-tests or exercises
• you have a question or problem with an assignment, with your

tutor’s comments on an assignment, or with the grading of an
assignment.

You should try to attend the tutorials. Thus, it is the only opportunity
you have to enjoy face-to-face contact with your tutor and to ask
questions that are answered instantly. You can raise any problem
encountered during your study. To gain the maximum benefit from
course tutorials, prepare a question list before attending them. You will
learn a lot from participating in the discussion actively.

IFT 203 COURSE GUIDE

x

Course Information

Course Code IFT 203
Course Title Introduction to Web Technology
Credit Unit 2
Course Status Compulsory
Course Blub:
This course dives into the dynamic world of web development with a
comprehensive introduction to web technologies. Designed for
beginners, this course provides a foundational understanding of the tools
and technologies that power the modern web. From HTML and CSS to
JavaScript and beyond, you'll gain hands-on experience building and
deploying web pages and applications. Learn the basics of HTML to
structure your web content and CSS to style and layout your pages.
Discover the power of JavaScript for creating interactive and dynamic
web experiences. Understand the principles of responsive web design to
ensure your sites work seamlessly across various devices. Gain a
preliminary understanding of server-side technologies and how they
interact with the client side. This course is perfect for aspiring web
developers, designers, or anyone interested in learning how to create
websites. No prior programming experience is required, just a passion
for learning and a curiosity about how the web works. The course
includes a mix of video lectures, interactive coding exercises, quizzes,
and hands-on projects. By the end of the course, you'll have built your
own functional website and gained the confidence to further explore
advanced web development topics.

Semester: first
Course Duration: 13 weeks
Required Hours for Study: 45

CONTENTS

Module 1 Introduction to the World Wide Web…………. 1

Unit 1 History of the Internet and the Web……………… 1
Unit 2 Understanding Web Browsers……………………. 17
Unit 3 Internet Services, Communication

and Protocol………………………………………. 26
Unit 4 Network model and web application

Development……………………………………… 47

Module 2 HTML Fundamentals…………………………… 67

Unit 1 Introduction to HTML……………………………. 67
Unit 2 HTML tags and attributed………………………… 83
Unit 3 HTML syntax and basic markup:

headings, paragraphs, lists, links…………………. 97
Unit 4 Advanced HTML Markup……………………...... 109

Module 3 Cascading Style Sheet (CSS)Basics……………. 129

Unit 1 Introduction to Cascading Style Sheet…………… 129
Unit 2 Styling with Cascading Style Sheet……………… 178

Module 4 Introduction to JavaScript……………………... 194

Unit 1 Basics of JavaScript……………………………… 194
Unit 2 Fundamentals of JavaScript for

Dynamic Statements……………………………… 225
Unit 3 Document Object Model (DOM)

Manipulation……………………………………… 238

MAIN
COURSE

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

1

MODULE 1 INTRODUCTION TO THE WORLD WIDE
 WEB

MODULE INTRODUCTION

The module "Introduction to the World Wide Web" offers a
comprehensive overview of the Internet's cornerstone technology,
enabling students to grasp the foundational concepts and historical
evolution of the web. This module begins by exploring the origins and
development of the World Wide Web, tracing its transformation from a
research project at CERN to the global information infrastructure it is
today. Students will gain insight into web browsers, including their
various types. Additionally, the module delves into internet services,
communication, and protocol. As the module progresses, it addresses the
practical aspects of web development and usage. Learners will engage in
hands-on activities designed to build their skills in designing,
developing, and deploying web pages. By the end of the course, students
will have a solid foundation in web technologies, preparing them for
further study or careers in web development, digital marketing, or
related fields.

Unit 1 History of the Internet and the Web
Unit 2 Understanding Web Browsers
Unit 3 Internet Services, Communication and Protocol
Unit 4 Network model and web application development

Unit 1 History of the Internet and the Web

Contents

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Introduction to ARPANET and the Birth of the Internet
3.2 Tim Berners-Lee and the Invention of the World Wide Web
3.3 Evolution of the web: from static to dynamic content
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Further Readings

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

2

1.0 Introduction

The World Wide Web (WWW) allows computer users to position and
view multimedia-based documents (i.e., documents with text, graphics,
animations, audio, and/or videos) on almost any subject. Even though
the Internet was developed more than three decades ago, the
introduction of the WWW was a relatively recent event. In 1990, Tim
Berners-Lee of CERN (the European Laboratory for Particle Physics)
developed the World Wide Web and several communication protocols
that form the backbone of the WWW. The Internet and the World Wide
Web will surely be listed among the most significant and profound
creations of humankind. In the past, most computer applications ran on
stand-alone computers. (i.e., computers that were not connected)
Today’s applications can be written to communicate among the world’s
hundreds of millions of computers. The Internet makes our work easier
by mixing computing and communications technologies. It makes
information immediately and conveniently accessible worldwide. It
makes it possible for individuals and small businesses to get worldwide
contact. In the last decade, the Internet and the World Wide Web have
altered the way people communicate, conduct business, and manage
their daily lives. They are changing the nature of the way business is
done.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

• Understand ARPANET and the Birth of the Internet.
• Explain the Tim Berners-Lee and the Invention of the World

Wide Web
• Explain the evolution of the web: from static to dynamic content

3.0 Main Content

3.1 Introduction to ARPANET and the birth of the internet

The simplest way of explaining the Internet is to call it "the network of
networks." It's the connection of computer networks around the world
into one entity, so to speak. It's not one big computer, but rather
numerous networked computers connected together.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

3

When you dial into your Internet service provider (AOL, Earthlink, etc)
from home, you are essentially connecting your computer to a network.
If you are on campus you connect to the Internet through your school's
network, which is connected to the larger Internet network through
Peachnet, which is the electronic highway for all educational institutions
and libraries throughout the state of Georgia. The "backbone" of all
these connections is what you might hear referred to as the "information
superhighway."

The Internet started in the 1960s as a way for government researchers to
share information. Computers in the '60s were large and immobile and
in order to make use of information stored in any one computer, one had
to either travel to the site of the computer or have magnetic computer
tapes sent through the conventional postal system.

Another catalyst in the formation of the Internet was the heating up of
the Cold War. The Soviet Union's launch of the Sputnik satellite spurred
the U.S. Defense Department to consider ways information could still be
disseminated even after a nuclear attack. This eventually led to the
formation of the ARPANET (Advanced Research Projects Agency
Network), the network that ultimately evolved into what we now know
as the Internet. ARPANET was a great success but membership was
limited to certain academic and research organizations who had
contracts with the Defense Department. In response to this, other
networks were created to provide information sharing.

January 1, 1983 is considered the official birthday of the Internet. Prior
to this, the various computer networks did not have a standard way to
communicate with each other. A new communications protocol was
established called Transfer Control Protocol/Internetwork Protocol
(TCP/IP). This allowed different kinds of computers on different
networks to "talk" to each other. ARPANET and the Defense Data
Network officially changed to the TCP/IP standard on January 1, 1983,
hence the birth of the Internet. All networks could now be connected by
a universal language.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

4

The image above is a scale model of the UNIVAC I (the name stood for
Universal Automatic Computer) which was delivered to the Census
Bureau in 1951. It weighed some 16,000 pounds, used 5,000 vacuum
tubes, and could perform about 1,000 calculations per second. It was the
first American commercial computer, as well as the first computer
designed for business use. (Business computers like the UNIVAC
processed data more slowly than the IAS-type machines, but were
designed for fast input and output.) The first few sales were to
government agencies, the A.C. Nielsen Company, and the Prudential
Insurance Company. The first UNIVAC for business applications was
installed at the General Electric Appliance Division, to do payroll, in
1954. By 1957 Remington-Rand (which had purchased the Eckert-
Mauchly Computer Corporation in 1950) had sold forty-six machines.
ARPANET , an experimental computer network that was the forerunner
of the Internet. The Advanced Research Projects Agency (ARPA), an
arm of the U.S. Defense Department, funded the development of the
Advanced Research Projects Agency Network (ARPANET) in the late
1960s. Its initial purpose was to link computers at Pentagon-funded
research institutions over telephone lines.

At the height of the Cold War, military commanders were seeking a
computer communications system without a central core, with no
headquarters or base of operations that could be attacked and destroyed
by enemies thus blacking out the entire network in one fell swoop.
ARPANET’s purpose was always more academic than military, but, as
more academic facilities connected to it, the network did take on the
tentacle-like structure military officials had envisioned.
The Internet essentially retains that form, although on a much larger
scale.

Roots of a network
ARPANET was an end-product of a decade of computer-
communications developments spurred by military concerns that the
Soviets might use their jet bombers to launch surprise nuclear attacks
against the United States. By the 1960s, a system called SAGE (Semi-
Automatic Ground Environment) had already been built and was using
computers to track incoming enemy aircraft and to coordinate military
response. The system included 23 “direction centers,” each with a
massive mainframe computer that could track 400 planes, distinguishing
friendly aircraft from enemy bombers. The system required six years
and $61 billion to implement.

The system’s name hints at its importance, as author John Naughton
points out. The system was only “semi-automatic,” so human interaction
was pivotal. For Joseph Carl Robnett Licklider, who would became the
first director of ARPA’s Information Processing Techniques

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

5

Office (IPTO), the SAGE network demonstrated above all else the
enormous power of interactive computing—or, as he referred to it in
a seminal 1960 essay, of “man-computer symbiosis.” In his essay, one
of the most important in the history of computing, Licklider posited the
then-radical belief that a marriage of the human mind with the computer
would eventually result in better decision-making.

In 1962, Licklider joined ARPA. According to Naughton, his brief two-
year stint at the organization seeded everything that was to follow.
His tenure signaled the demilitarization of ARPA; it was Licklider who
changed the name of his office from Command and Control Research to
IPTO. “Lick,” as he insisted on being called, brought to the project an
emphasis on interactive computing and the prevalent
utopian conviction that humans teamed with computers could create a
better world.

Perhaps in part because of Cold War fears, during Licklider’s IPTO
tenure, it is estimated that 70 percent of all U.S. computer-science
research was funded by ARPA. But many of those involved said that the
agency was far from being a restrictive militaristic environment and that
it gave them free rein to try out radical ideas. As a result, ARPA was the
birthplace not only of computer networks and the Internet but also
of computer graphics, parallel processing, computer flight simulation,
and other key achievements.

Ivan Sutherland succeeded Licklider as IPTO director in 1964, and two
years later Robert Taylor became IPTO director. Taylor would become a
key figure in ARPANET’s development, partly because of his
observational abilities. In the Pentagon’s IPTO office, Taylor had access
to three teletype terminals, each hooked up to one of three remote
ARPA-supported time-sharing mainframe computers—at Systems
Development Corp. in Santa Monica, at UC Berkeley’s Genie Project,
and at MIT’s Compatible Time-Sharing System project (later known as
Multics).

In his room at the Pentagon, Taylor’s access to time-shared systems led
him to a key social observation. He could watch as computers at all
three remote facilities came alive with activity, connecting local users.
Time-shared computers allowed people to exchange messages and share
files. Through the computers, people could learn about each other.
Interactive communities formed around the machines.
Taylor also decided that it made no sense to require three teletype
machines just to communicate with three incompatible computer
systems. It would be much more efficient if the three were merged into
one, with a single computer-language protocol that could allow any

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

6

terminal to communicate with any other terminal. These insights led
Taylor to propose and secure funding for ARPANET.

A plan for the network was first made available publicly in October
1967, at an Association for Computing Machinery (ACM) symposium
in Gatlinburg, Tennessee. There, plans were announced for building a
computer network that would link 16 ARPA-sponsored universities and
research centers across the United States. In the summer of 1968, the
Defense Department put out a call for competitive bids to build the
network, and in January 1969 Bolt, Beranek, and Newman (BBN)
of Cambridge, Massachusetts, won the $1 million contract.

According to Charles M. Herzfeld, the former director of ARPA, Taylor
and his colleagues wanted to see if they could link computers and
researchers together. The project’s military role was much less
important. But at the time it was launched, Herzfeld noted, no one knew
whether it could be done, so the program, initially funded on $1 million
diverted from ballistic-missile defense, was risky.

Taylor became ARPA’s computer evangelist, picking up Licklider’s
mantle and preaching the gospel of distributed interactive computing. In
1968, Taylor and Licklider co-authored a key essay, “The Computer as a
Communication Device,” which was published in the popular
journal Science and Technology. It began with a thunderclap: “In a few
years, men will be able to communicate more effectively through a
machine than face to face.” The article went on to predict everything
from global online communities to mood-sensing computer interfaces. It
was the first inkling the public ever had about the potential of networked
digital computing, and it attracted other researchers to the cause.

A packet of data
ARPANET arose from a desire to share information over great distances
without the need for dedicated phone connections between each
computer on a network. As it turned out, fulfilling this desire would
require “packet switching.”

Paul Baran, a researcher at the RAND Corporation think tank, first
introduced the idea. Baran was instructed to come up with a plan for a
computer communications network that could survive nuclear attack and
continue functioning. He came up with a process that he called “hot-
potato routing,” which later became known as packet switching.

“Packets” are small clusters of digital information broken up from larger
messages for expediency’s sake. To illustrate in more recent terms: an e-
mail might be split into numerous electronic packets of information and
transmitted almost at random across the labyrinth of the nation’s

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

7

telephone lines. They do not all follow the same route and do not even
need to travel in proper sequential order. They are precisely reassembled
by a modem at the receiver’s end, because each packet contains an
identifying “header,” revealing which part of the larger message it
represents, along with instructions for reconstituting the intended
message. As a further safeguard, packets contain mathematical
verification schemes that insure data does not get lost in transit. The
network on which they travel, meanwhile, consists of computerized
switches that automatically forward packets on to their destination. Data
packets make computer communications more workable within existing
telephone infrastructure by allowing all those packets to flow following
paths of least resistance, thereby preventing logjams of digital data over
direct, dedicated telephone lines.

Baran’s idea was ignored by the military. A 1964 paper outlining
his innovation was published, but it was classified and began to collect
dust. Fortunately, one place it was collecting dust was in the offices
of ARPA, where it was eventually rediscovered. Baran’s idea became
the key concept that made ARPANET possible. Packet-switched
communication remains perhaps the most important legacy handed
down to the Internet by ARPANET.

Rise and fall
In late 1969, a team of UCLA graduate students under the leadership of
professor Leonard Kleinrock sent the first packet-switched message
between two computers. A member of Kleinrock’s team, Charley Kline,
had the distinction of being first to send it, but it was not a rousing start.
As Kline at UCLA tried logging into the Stanford Research Institute’s
computer for the first time, the system crashed just as he was typing the
letter “G” in “LOGIN.”

The bugs were worked out, and further connections were made
flawlessly, but the early network had many limitations. At the time of
Kline’s first message to Stanford, logging into a remote computer was
one of just three tasks possible on ARPANET; the other options were
printing to a remote printer and transferring files between computers.
Nevertheless, the interest generated by the nascent two-node network
was intense. By the end of 1969, academic institutions were scrambling
to connect to ARPANET. The University of California–Santa Barbara
and the University of Utah linked up that year. By April 1971, there
were 15 nodes and 23 host terminals in the network. In addition to the
four initial schools, contractor BBN had joined, along with MIT, the
RAND Corporation, and NASA, among others. By January 1973, there
were 35 connected nodes; by 1976, there were 63 connected hosts.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

8

During its first 10 years, ARPANET was a test bed for
networking innovations. New applications and protocols like Telnet, file
transfer protocol (FTP), and network control protocol (NCP) were
constantly being devised, tested, and deployed on the network. In 1971,
BBN’s Ray Tomlinson wrote the first e-mail program, and the
ARPANET community took to it instantly. “Mailing lists,” which
eventually became known as “LISTSERVs,” followed e-mail almost
immediately, creating virtual discussion groups. One of the first e-mail
discussion lists was SF-LOVERS, which was dedicated to science
fiction fans.

What ARPANET could not do was talk to any of the other computing
networks that inevitably sprang up in its wake. Its design required too
much control and too much standardization among machines and
equipment on the network, according to Naughton. So in the spring of
1973, Vinton Cerf and Bob Kahn began considering ways of connecting
ARPANET with two other networks that had emerged, specifically
SATNET (satellite networking) and a Hawaii-based packet radio system
called ALOHANET. One day, waiting in a hotel lobby, Cerf dreamed up
a new computer communications protocol, a gateway between networks,
which eventually became known as transmission-control
protocol/Internet protocol (TCP/IP). TCP/IP, which was first tested on
ARPANET in 1977, was a way that one network could hand
off data packets to another, then another, and another. Eventually, when
the Internet consisted of a network of networks, Cerf’s innovation would
prove invaluable. It remains the basis of the modern Internet.

In 1975, ARPANET was transferred to the Defense Communications
Agency. By that time, it was no longer experimental, nor was it alone.
Numerous new networks had emerged by the late 1970s, including
CSNET (Computer Science Research Network), CDnet (Canadian
Network), BITNET (Because It’s Time Network), and NSFNET
(National Science Foundation Network); the last of these would
eventually replace ARPANET as the backbone of the Internet before it
was itself superseded by commercial networks.

The term “Internet” was adopted in 1983, at about the same time
that TCP/IP came into wide use. In 1983, ARPANET was divided into
two parts, MILNET, to be used by military and defense agencies, and a
civilian version of ARPANET. The word “Internet” was initially coined
as an easy way to refer to the combination of these two networks, to
their “internetworking.”

The end of ARPANET’s days arrived in mid-1982, when its
communications protocol, NCP, was turned off for a day, allowing only
network sites that had switched to Cerf’s TCP/IP language to

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

9

communicate. On January 1, 1983, NCP was consigned to history, and
TCP/IP began its rise as the universal protocol. The final breakthrough
for TCP/IP came in 1985, when it was built into a version of
the UNIX operating system. That eventually put it in Sun Microsystems
workstations and, Naughton writes, “into the heart of the operating
system which drove most of the computers on which the Internet would
eventually run.” As Cerf would observe, “The history of the Net is the
history of protocols.”

As both free and commercial online services like Prodigy, FidoNet,
Usenet, Gopher, and many others rose, and as NSFNET became the
Internet’s backbone, ARPANET’s importance diminished. The system
was finally shut down in 1989 and formally decommissioned in 1990,
just two years before Tim Berners-Lee would change everything all over
again with the introduction of the World Wide Web.

3.2 Tim Berners-Lee and the Invention of the World Wide Web

Sir Tim Berners-Lee is a British computer scientist. He was born in
London, and his parents were early computer scientists, working on one
of the earliest computers.

Growing up, Sir Tim was interested in trains and had a model railway in
his bedroom. He recalls:
“I made some electronic gadgets to control the trains. Then I ended up
getting more interested in electronics than trains. Later on, when I was
in college I made a computer out of an old television set.”
After graduating from Oxford University, Berners-Lee became a
software engineer at CERN, the large particle physics laboratory near
Geneva, Switzerland. Scientists come from all over the world to use its
accelerators, but Sir Tim noticed that they were having difficulty sharing
information.

“In those days, there was different information on different computers,
but you had to log on to different computers to get at it. Also, sometimes
you had to learn a different program on each computer. Often it was just
easier to go and ask people when they were having coffee…”, Tim says.
Tim thought he saw a way to solve this problem – one that he could see
could also have much broader applications. Already, millions of
computers were being connected together through the fast-
developing internet and Berners-Lee realized they could share
information by exploiting an emerging technology called hypertext.

In March 1989, Tim laid out his vision for what would become the web
in a document called “Information Management: A Proposal”. Believe it
or not, Tim’s initial proposal was not immediately accepted. His boss at

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

10

the time, Mike Sendall, noted the words “Vague but exciting” on the
cover. The web was never an official CERN project, but Mike managed
to give Tim time to work on it in September 1990. He began work using
a NeXT computer, one of Steve Jobs’ early products.

Tim’s original proposal. Image: CERN
By October of 1990, Tim had written the three fundamental
technologies that remain the foundation of today’s web (and which you
may have seen appear on parts of your web browser):
HTML: HyperText Markup Language. The markup (formatting)
language for the web.

URI: Uniform Resource Identifier. A kind of “address” that is unique
and used to identify each resource on the web. It is also commonly
called a URL.

HTTP: Hypertext Transfer Protocol. Allows for the retrieval of linked
resources from across the web.

Tim also wrote the first web page editor/browser
(“WorldWideWeb.app”) and the first web server (“httpd”). By the end
of 1990, the first web page was served on the open internet, and in 1991,
people outside of CERN were invited to join this new web community.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

11

As the web began to grow, Tim realized that its true potential would
only be unleashed if anyone, anywhere could use it without paying a fee
or having to ask for permission.

He explains: “Had the technology been proprietary, and in my total
control, it would probably not have taken off. You can’t propose that
something be a universal space and at the same time keep control of it.”
So, Tim and others advocated to ensure that CERN would agree to make
the underlying code available on a royalty-free basis, forever. This
decision was announced in April 1993 and sparked a global wave of
creativity, collaboration, and innovation never seen before. In 2003, the
companies developing new web standards committed to a royalty-free
policy for their work. In 2014, the year we celebrated the web’s 25th
birthday, almost two in five people around the world were using it.

Tim moved from CERN to the Massachusetts Institute of Technology in
1994 to found the World Wide Web Consortium (W3C), an
international community devoted to developing open web standards. He
remains the Director of W3C to this day.

The early web community produced some revolutionary ideas that are
now spreading far beyond the technology sector:
Decentralisation: No permission is needed from a central authority to
post anything on the web, there is no central controlling node, and so no
single point of failure … and no “kill switch”! This also implies freedom
from indiscriminate censorship and surveillance.

Non-discrimination: If I pay to connect to the internet with a certain
quality of service, and you pay to connect with that or a greater quality
of service, then we can both communicate at the same level. This
principle of equity is also known as Net Neutrality.

Bottom-up design: Instead of code being written and controlled by a
small group of experts, it was developed in full view of everyone,
encouraging maximum participation and experimentation.

Universality: For anyone to be able to publish anything on the web, all
the computers involved have to speak the same languages to each other,
no matter what different hardware people are using; where they live; or
what cultural and political beliefs they have. In this way, the web breaks
down silos while still allowing diversity to flourish.

Consensus: For universal standards to work, everyone had to agree to
use them. Tim and others achieved this consensus by giving everyone a
say in creating the standards, through a transparent, participatory
process at W3C.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

12

New permutations of these ideas are giving rise to exciting new
approaches in fields as diverse as information (Open Data), politics
(Open Government), scientific research (Open Access), education, and
culture (Free Culture). But to date, we have only scratched the surface of
how these principles could change society and politics for the better.

In 2009, Sir Tim co-founded the World Wide Web Foundation with
Rosemary Leith. The Web Foundation is fighting for the web we want a
web that is safe, empowering, and for everyone.

3.3 Evolution of the web: from static to dynamic content

Web development has undergone a remarkable evolution since its
inception, transforming from simple static web pages to highly
interactive and dynamic experiences. This journey has been fueled by
advancements in technology, changes in user expectations, and the ever-
growing demand for richer online experiences.

The Era of Static Web Pages: In the early days of the World Wide
Web, websites were predominantly static, consisting of simple HTML
pages with limited interactivity. These static websites served primarily
as digital brochures, providing users with basic information about
businesses, organizations, or individuals. Web developers focused on
creating visually appealing layouts and ensuring compatibility across
different web browsers.

Introduction of Dynamic Content: The emergence of server-side
technologies, such as CGI (Common Gateway Interface) and PHP
(Hypertext Preprocessor), revolutionized web development by enabling
the generation of dynamic content. With server-side scripting, websites
could now retrieve data from databases, handle user input, and
personalize content based on user interactions. This shift paved the way
for more interactive web experiences, including e-commerce platforms,
discussion forums, and content management systems.

Rise of Client-Side Scripting: As internet speeds improved and
browser capabilities advanced, client-side scripting languages like
JavaScript gained prominence. JavaScript allowed developers to
manipulate web page elements dynamically, create interactive features,
and enhance user interfaces without requiring round-trips to the server.
This led to the development of rich internet applications (RIAs) and
AJAX (Asynchronous JavaScript and XML) techniques, which enabled
smoother and more responsive user experiences.

The Era of Web Frameworks: With the increasing complexity of web
applications, developers turned to web frameworks to streamline

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

13

development processes and maintain code consistency. Frameworks like
Ruby on Rails, Django, and Laravel provided pre-built components,
MVC (Model-View-Controller) architecture, and other tools to
accelerate development and ensure scalability. These frameworks
empowered developers to focus on building features and functionality
rather than reinventing the wheel with each project.

Mobile Responsiveness and Progressive Web Apps (PWAs): The
proliferation of smartphones and tablets prompted a shift towards
mobile-first web development practices. Websites needed to adapt to
various screen sizes and device capabilities to deliver optimal user
experiences across different platforms. Responsive web design became
the norm, ensuring that websites dynamically adjusted their layout and
content based on the viewing device. Additionally, Progressive Web
Apps (PWAs) emerged as a hybrid approach, combining the best
features of web and mobile applications to deliver fast, reliable, and
engaging experiences, even in offline mode.

The Era of Single Page Applications (SPAs) and APIs: Single Page
Applications (SPAs) introduced a paradigm shift in web development,
offering seamless, fluid user experiences akin to desktop applications.
SPAs load content dynamically, updating the page without full page
reloads, resulting in faster navigation and smoother interactions.
Technologies like React, Angular, and Vue.js empowered developers to
build complex SPAs with reusable components and efficient data
management. Moreover, the rise of web APIs (Application
Programming Interfaces) facilitated seamless integration with third-
party services and data sources, enabling developers to leverage a
wealth of resources to enrich their applications.

Embracing Modern Technologies: Web development continues to
evolve rapidly, driven by advancements in technologies such as
WebAssembly, GraphQL, and serverless computing. WebAssembly
enables high-performance, language-agnostic code execution in the
browser, opening the door to new possibilities for web-based
applications, including gaming, multimedia processing, and augmented
reality. GraphQL simplifies data fetching and manipulation by providing
a flexible and efficient query language for APIs, empowering clients to
request precisely the data they need. Serverless computing abstracts
away infrastructure management, allowing developers to focus on
writing code without worrying about server provisioning or scalability.
The evolution of web development has been characterized by a
relentless pursuit of richer, more engaging user experiences. From the
humble beginnings of static web pages to the complex, interactive
applications of today, developers have continually pushed the
boundaries of what is possible on the web. As technology continues to

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

14

advance and user expectations evolve, web developers will undoubtedly
face new challenges and opportunities, shaping the future of the digital
landscape for years to come.

Self-Assessment Exercise(s)

(1) Who is considered the "father of the Internet"?
a) Tim Berners-Lee
b) Vint Cerf
c) Bill Gates
d) Steve Jobs

Answer: b) Vint Cerf

(2) Which organization developed the ARPANET, the precursor to

the modern Internet?
a) NASA
b) IBM
c) DARPA
d) CERN
Answer: c) DARPA

(3) In what year was the World Wide Web invented?
a) 1983
b) 1989
c) 1991
d) 1995
Answer: b) 1989

(4) Who invented the World Wide Web?
a) Marc Andreessen
b) Larry Page
c) Tim Berners-Lee
d) Sergey Brin
Answer: c) Tim Berners-Lee

(5) Which protocol is fundamental for the functioning of the Internet

by providing unique addresses for devices?
a) HTTP
b) FTP
c) IP
d) SMTP
Answer: c) IP

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

15

Conclusion

The history of the Internet and the Web is a remarkable narrative of
innovation, collaboration, and societal transformation. Originating from
the early experiments in packet switching and ARPANET, the Internet
evolved into a global network that connects billions of devices and
people. The invention of the World Wide Web by Tim Berners-Lee in
1989 revolutionized how information is shared and accessed,
transforming the Internet from a tool for researchers and academics into
an indispensable resource for everyday life. This evolution has been
marked by significant technological advancements, such as the
development of TCP/IP protocols, the creation of user-friendly web
browsers, and the rise of dynamic web applications. The Internet and the
Web have not only reshaped communication and commerce but also
posed new challenges and opportunities for privacy, security, and digital
equity. As we continue to navigate this digital landscape, understanding
its history helps us appreciate its impact and guides us in addressing the
complexities of its future.

 4.0 Summary

The history of the Internet began in the late 1960s with the development
of ARPANET by the Defense Advanced Research Projects Agency
(DARPA). This early network used packet switching to allow multiple
computers to communicate on a single network, laying the groundwork
for modern Internet protocols. In 1983, the adoption of the TCP/IP
protocol suite enabled various disparate networks to interconnect and
communicate effectively, marking a significant milestone in the
evolution of the Internet. The network continued to grow, supported by
academic and governmental bodies, eventually opening up to
commercial use and the broader public by the late 1980s and early
1990s.

The World Wide Web, invented by Tim Berners-Lee in 1989,
fundamentally transformed the Internet by introducing a system for
sharing information through interconnected documents and multimedia.
The first web browser, World Wide Web (later renamed Nexus), and the
subsequent release of Mosaic in 1993, made the Web accessible to a
wider audience. This era saw rapid growth in the number of websites
and users, leading to the dot-com boom of the late 1990s. Over time, the
Web evolved from static pages to dynamic, interactive platforms,
epitomized by Web 2.0 technologies like social media, blogs, and wikis.
This transformation has had profound impacts on communication,
commerce, and culture, shaping the digital landscape we navigate today.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

16

Understanding this history highlights the technological advancements
and societal shifts that have defined our modern era.

 5.0 References/Further Readings

Lambert, L., Woodford, C., & Moschovitis, C. J. (2005). The internet: a

historical encyclopedia (Vol. 2). Abc-clio.

McCullough, B. (2018). How the internet happened: from Netscape to

the iPhone. Liveright Publishing.

Trinkle, D. A., & Merriman, S. A. (2002). The World History Highway:

A Guide to Internet Resources. ME Sharpe.

Ducke, I. (2003). Activism and the Internet: Japan’s 2001 history-

textbook affair. In Japanese cybercultures (pp. 223-239).
Routledge.

Trinkle, D. A., Auchter, D., Merriman, S. A., & Larson, T. E.

(2016). The history highway: A 21st-century guide to internet
resources. Routledge.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

17

Unit 2 Understanding Web Browsers

Contents

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 Introduction to web browsers and their role in accessing
the web

3.2 How Does a Web Browser Work?
3.3 Web Browser Architecture

4.0 Summary
5.0 References/Further Reading

 1.0 Introduction

A web browser takes you anywhere on the internet. It retrieves
information from other parts of the web and displays it on your desktop
or mobile device. The information is transferred using the Hypertext
Transfer Protocol, which defines how text, images, and video are
transmitted on the web. This information needs to be shared and
displayed in a consistent format so that people using any browser,
anywhere in the world can see the information. Sadly, not all browser
makers choose to interpret the format in the same way. For users, this
means that a website can look and function differently. Creating
consistency between browsers, so that any user can enjoy the internet,
regardless of the browser they choose, is called web standards.

When the web browser fetches data from an internet-connected server, it
uses a piece of software called a rendering engine to translate that data
into text and images. This data is written in Hypertext Markup
Language (HTML) and web browsers read this code to create what we
see, hear, and experience on the internet. Hyperlinks allow users to
follow a path to other pages or sites on the web. Every webpage, image
and video has its own unique Uniform Resource Locator (URL), which
is also known as a web address. When a browser visits a server for data,
the web address tells the browser where to look for each item that is
described in the HTML, which then tells the browser where it goes on
the web page.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

18

 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:
• Understand the web browsers.
• Identify various types of web browsers.

3.0 Main Content

3.1 Introduction to web browsers and their role in accessing the

web

When we need any kind of information most of the time we get help
from the Internet, and we get information. The Internet provides us with
useful information easily. We use mobile phones, computers, and
tablets. We search for a lot of things in our daily lives, so we get
information about all over the world, but we cannot get information by
just only getting connected to the Internet. We need a platform where
we can search for our questions. The platform that provides such kinds
of services is called a web browser, without a web browser internet will
not be able to provide information.

The web browser is an application software to explore www (World
Wide Web). It provides an interface between the server and the client
and it requests to the server for web documents and services. It works as
a compiler to render HTML which is used to design a webpage.
Whenever we search for anything on the internet, the browser loads a
web page written in HTML, including text, links, images, and other
items such as style sheets and JavaScript functions. Google Chrome,
Microsoft Edge, Mozilla Firefox, and Safari are examples of web
browsers.

The first web browser World Wide Web was invented in the year of
1990 by Tim Berners-Lee. Later, it becomes Nexus. In the year of 1993,
a new browser Mosaic was invented by Mark Andreessen and their
team. It was the first browser to display text and images at a time on the
device screen. He also invents another browser Netscape in 1994. Next
year Microsoft launched a web browser Internet Explorer which was
already installed in the Windows operating system. After this many
browsers were invented with various features like Mozilla Firefox,
Google Chrome, Safari, Opera, etc.

You might wonder that if every web browser provides an interface to the
user and allows them to connect with the web, then why are there so
many web browsers in the first place? If we look at the history of web

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

19

browsers, we can tell a lot about their special features and developing
techniques.

Before web browsers came into existence, computers were more like
boxes that used command-line interfaces to perform some tasks. The
development of web browsers revolutionized the entire way of
interacting with a computer.

In 1990, a computer scientist Tim Berners-Lee, developed the first ever
browser named “World Wide Web”, at CERN (A European organization
for nuclear research). It was indeed an extraordinary development as it
was the only web browser present at that time that provided a user-
friendly interface.

In 1993, everyone started becoming familiar with the concept of web
browsers and was curious to develop the same. This led to the invention
of the “Mosaic” by NCSA (National Centre for Supercomputing
Applications) at the University of Illinois. It gained massive popularity
as it was the first graphical browser that demonstrated the use of
multimedia (images) on the web.

In 1994, another browser called “Netscape”, founded by Andreessen
turned out to be a success. It was the first web browser to be made
public and gained immense popularity.

In 1995, the world witnessed a race to develop better web browsers with
attractive versions. It was this year when Microsoft developed the
“Internet Explorer” and released it resulting in so-called “browser wars”.
The war between Internet Explorer and Netscape continued for a while.
In 1996, Opera Software released its web browser” Opera”.

In 1998, Netscape made its code open source which led to the birth of
“Mozilla”. It later evolved into the Mozilla Firefox web browser, which
eventually gained user’s attraction.

In 2003, Apple launched “Safari” a web browser particularly made for
devices with the Macintosh operating system. Later it was available for
Windows users too and even had a mobile version.

In 2008, the “Google Chrome” web browser, founded by Google, came
into existence and started taking over the entire market of web browsers
and ruling them. It attracted users all across the globe because of its
high-speed rendering, improved web performance, and well-designed
interface. To date, it has maintained its position as the most used web
browser.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

20

Later in 2015, Internet Explorer was renamed as “Microsoft Edge“. In
today’s time, Microsoft Edge comes preinstalled on many Windows
devices. Also, several other browsers like Brave and Vivaldi came into
the game and are used by some users for their unique features.

Timeline of Browsers:
Given below is the timeline of browsers found to date:

3.2 How does a Web Browser Work?

A web browser helps us find information anywhere on the internet. It is
installed on the client computer and requests information from the web
server such a type of working model is called a client-server model.

Client-server model
The browser receives information through HTTP protocol. In which
transmission of data is defined. When the browser receives data from the
server, it is rendered in HTML to user-readable form, and, information
is displayed on the device screen.

Website Cookies
When we visit any website over the internet our web browser stores
information about us in small files called cookies. Cookies are designed
to remember stateful information about our browsing history. Some
more cookies are used to remember about us like our interests, our

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

21

browsing patterns, etc. Websites show us ads based on our interests
using cookies.
An Overview of Web Browser Functionality:
Web browsers are software programs that provide an interface or
medium for users to connect with the web. It receives requests sent by
users, fetches data from web servers, and then displays the result to the
user.

The user always searches in the form of a URL (for example,
www.noun.edu.ng) and sends a request to the browser.

Then the browser converts the URL into a numeric value, which is
called an IP address, using DNS, or Domain Name System.

Through the IP address, web browsers generate a request, which is sent
to the web servers.

The data retrieved from the server (which is in the form of code) is
parsed, and then when the entire document object model is created, it is
presented to users in the form of web pages.

Advantages of using Web Browsers:
A web browser’s main role is to provide an interface or medium through
which users can search on the web and access various websites.

Users can visit different websites by just entering the URL of the
website on the web browser. Thus, it makes surfing on internet easier
and quicker.

Web browsers also ensures secure and safe access to websites and
prevents users’ device from any malicious software. They take special
care of users’ privacy by data encryption.

Multimedia (images and videos) is also supported by web browsers. It
displays multimedia elements using CSS and JavaScript.

Several web browsers provide features to sync devices, thus making it
easier for the user to access their personalized settings on multiple
devices.

In current times, users demand a faster, more efficient, and more secure
browsing experience. Keeping this in mind, various features are being
constantly added, and the web browsers are updated from time to time.
Every browser has basic features like an address bar, navigation buttons,
a home button, a refresh, history, downloads, etc.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

22

Some more features of web browsers present in today’s time are:
Web browsers keep on making updates, keeping one of the most
important things in mind, which is a “user-friendly experience”. For
example, Chrome, being the most used web browser, offers attractive
features and provides users with an easy and quick environment to work
in.

As technology is increasing in modern times, so is the threat of
cybercrime or virus attacks. Web browsers now provide a secure setup
for users, taking special care of their privacy.

Web browsers also offer a wide range of extensions and add-ons to
improve the functioning of web browsers and make them more efficient.
Special features like allowing devices to sync, thus preventing loss of
data, and adding voice search, screen reading, etc. have made it possible
for every person to benefit from web browsers.

3.4 Web Browser Architecture

Browser architecture is designed to provide a faster, more secure, and
more feature-rich platform that helps users interact easily with the
internet. The browser architecture is broadly divided into seven parts.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

23

Browser Architecture
The user interface of a browser is designed such that it allows
personalization, as every individual has different interests. This
personalization is achieved by providing basic features like groups,
collections, bookmarks, and themes. Each browser can have a different
user interface and features.

Browser Engine: The browser engine is responsible for coordinating
web content that is fetched from the server and user interactions. It
keeps a note of which button is clicked, which URL is asked to parse,
and how the web content will be processed and displayed on the
browser.

Rendering Engine: The rendering engine, on the other hand, interprets
and renders web content. In most browsers, both the browser engine and
the rendering engine work together to provide better results to the user.

Networking Layer: This layer handles the communication part. When
the user enters or clicks on a URL, the network layer initiates an HTTP
request to the webserver to load the requested web page. It also manages
fetching resources from HTML files, images, stylesheets, and more.
Have you seen those cookie notifications while searching for
information on the internet? Mostly, the network layer works behind the
scenes for those cookies and cache.

JavaScript Engine: The JavaScript Engine is the core component of
browser architecture, with the ability to manipulate web content and
introduce dynamic behavior in web pages.

Data Storage: A large part of the browser goes into storing various
types of data, which include not only user preferences, browsing history,
passwords, and other regular data updates as well (address, name, and
contact).

UI backend: The UI backend provides dynamic and interactive behavior
on the web page and enhances the overall functionality and performance
of the browser.

Self-Assessment Exercise(s)

(1) Which of the following is NOT a popular web browser?
a) Google Chrome
b) Mozilla Firefox
c) Adobe Photoshop
d) Apple Safari
Answer: c) Adobe Photoshop

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

24

(2) What is the primary function of a web browser?
a) To compile code
b) To access and display web pages
c) To edit images
d) To manage databases
Answer: b) To access and display web pages

(3) Who is credited with inventing the World Wide Web?
a) Bill Gates
b) Steve Jobs
c) Tim Berners-Lee
d) Mark Zuckerberg
Answer: c) Tim Berners-Lee

(4) Which of the following is a feature commonly found in web

browsers?
a) Spreadsheet editing
b) Rendering HTML and CSS
c) Video Production
d) Compiling Java code
Answer: b) Rendering HTML and CSS

(5) What does the term "rendering" refer to in the context of web

browsers?
a) Storing data on a server
b) Displaying the visual layout of a web page
c) Encrypting user data
d) Sending emails
Answer: b) Displaying the visual layout of a web page

 Conclusion

The magic of web browsing doesn’t end with its convenience.
Understanding the intricate workings behind the scenes, from rendering
engines to JavaScript manipulation, adds a layer of appreciation for the
complex symphony that delivers information to your screen at lightning
speed. Whether you’re a tech enthusiast or simply curious about how
things work, delve deeper into browser architecture to unlock a new
level of understanding about the tool that connects you to the vast world
of the internet.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

25

4.0 Summary

Understanding Web Browsers" is an essential module that delves into
the function and importance of web browsers, the primary tools for
accessing and navigating the World Wide Web. This unit explains how
web browsers work, detailing their role in interpreting and displaying
web content by processing HTML, CSS, and JavaScript. Students learn
about the architecture of browsers, including the rendering engine,
JavaScript engine, and networking components, which collaborate to
provide a seamless browsing experience. In addition to the technical
aspects, the unit covers practical usage and features of web browsers
that enhance user experience.

 5.0 References/Further Readings

Brusilovsky, P., Schwarz, E., & Weber, G. (1996, October). A tool for

developing adaptive electronic textbooks on WWW. Web site:
http://aace. virginia. edu/aace/conf/webnet/html/151/151. htm.

Ducke, I. (2003). Activism and the Internet: Japan’s 2001 history-

textbook affair. In Japanese cybercultures (pp. 223-239).
Routledge.

Trinkle, D. A., Auchter, D., Merriman, S. A., & Larson, T. E.

(2016). The history highway: A 21st-century guide to internet
resources. Routledge.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

26

Unit 3 Internet Services, Communication, and Protocol

Contents

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 The Internet Services
3.2 Types of Internet Services
3.3 Internet Communication
3.4 The Common Internet Protocols

4.0 Summary
5.0 References/Further Readings

 1.0 Introduction

This unit delves into the foundational aspects and intricate mechanisms
that power the global network of interconnected computers known as the
Internet. This unit aims to provide a comprehensive understanding of the
various internet services that facilitate communication, information
sharing, and digital transactions in today's world. By exploring the
architecture and functionalities of essential services like the World Wide
Web, email, file transfer, and streaming, learners will gain insights into
how these services operate seamlessly and efficiently to meet the
demands of billions of users worldwide. Central to this unit is the
exploration of communication protocols, the rules, and conventions that
govern the exchange of data over the Internet. These protocols ensure
reliable, secure, and standardized communication between diverse
systems and devices. The unit will cover key protocols such as HTTP,
HTTPS, FTP, SMTP, and TCP/IP, explaining their roles, functionalities,
and significance in maintaining the internet's integrity and performance.
By the end of this unit, students will have a solid grasp of how internet
services and communication protocols work in unison to create a
cohesive and dynamic digital ecosystem.

 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:
• Understand Internet.
• Identify various services the Internet provides for the users.
• Explain the Internet communication channels
• Explain some common Internet Protocols

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

27

 3.0 Main Content

3.1 The Internet Services

The Internet is defined as a global network of linked computers, servers,
phones, and smart appliances that communicate with each other using
the transmission control protocol (TCP) standard to enable the fast
exchange of information and files, along with other types of
services. The Internet is a global network of interconnected computers,
servers, phones, and smart appliances that communicate with each other
using the TCP standard to enable a fast exchange of information and
files, along with other types of services.

The internet is a global hub of computer networks, a network of
connections wherein users at any workstation may, with authorization,
receive data from every other system (and often interact with users
working on other computers).

Internet infrastructure comprises optical fiber data transmission cables
or copper wires, as well as numerous additional networking
infrastructures, such as local area networks (LAN), wide area networks
(WAN), metropolitan area networks (MAN), etc. Sometimes wireless
services such as 4G and 5G or WiFi necessitate similar physical cable
installations for internet access.

Internet Corporation for Assigned Names and Numbers (ICANN) in the
United States controls the Internet and its associated technologies, such
as IP addresses.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

28

How was the Internet developed?
The internet was first envisioned in the form of ARPANET by the
Advanced Research Projects Agency (ARPA) of the U.S. government in
1969. The initial goal was to create a network that would enable users of
a research computer at one institution to “communicate” with research
computers at another institution. Since communications can be sent or
diverted across several directions, ARPANet could continue to operate
even if a military strike or any other calamity damages portions of the
network.

ARPANET used the new packet-switching technology to create low-
cost, interactive interactions between computers, which generally
communicate in short data bursts. Packet switching broke down large
transmissions (or portions of computer data) into smaller, more
manageable parts (called packets) that could travel independently across
any accessible circuit to the destination where they were reassembled.
Consequently, unlike conventional voice services, packet switching
doesn’t require a separate dedicated connection between a pair of users.
In the 1970s, corporate packet networks were launched, although their
primary purpose was to enable efficient access to distant computers
through specialized terminals. They replaced expensive long-distance
modem connections with “virtual” lines via packet networks.

Today, the Internet is a globally accessible, collaborative, and self-
sustaining public resource available to tens of millions of individuals.
Countless people utilize it as their primary source of data consumption,
spurring the development and expansion of their own community
through social networking and content exchange. However, private
versions of the internet do exist, which are primarily used by large
organizations for secure and regulated information exchange.

Key features of the Internet
The internet is a vast, interconnected network of computers and other
network-enabled devices, which is:

Globally available: The internet is an international service with
universal access. People living in isolated areas of an archipelago or
even in the depths of Africa can now access the internet.

Easy to use: The software used to connect to the internet (web browser)
is user-friendly and easy to understand. It’s also relatively easy to create.
Compatible with other types of media: The internet provides a high level
of engagement with photos and videos, among other media.

Affordable: Internet service development, as well as maintenance costs,
are modest.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

29

Flexible: Internet-based communication is highly adaptable. It supports
text, audio, and video communication. These services are available at
both individual and organizational levels.

How Does the Internet Work?
The internet delivers different types of information and media across
networked devices. It operates using an internet protocol (IP) and
a transport control protocol (TCP) packet routing network. Whenever
you visit a website, your computer or mobile device requests the server
using such protocols.

A server is where web pages are stored, and it functions similarly to the
hard drive of a computer, except with far greater processing power. The
server accesses the web page and delivers the right information to your
computer whenever the request arrives. This is broadly the end-to-end
user experience. Let us now look at the more technical details of how
the internet works.

1. Connecting computers: The basic foundation of the internet is

an interconnected network of computers. When two computers
interact, they must be physically (often via an Ethernet
connection) or wirelessly connected (via Wi-Fi or Bluetooth). All
modern systems can support any of these connections to establish
a core network.

2. Scaling computer networks: The computer network, as
described above, is not restricted to two PCs. One can link
several computers. However, as you expand, it may get more
complex. Every machine on a network is connected to a tiny
computing device known as a router to address this problem. This
router’s only function is to operate as a signaler. It ensures that a
message transmitted from a particular computer reaches its
intended recipient. With the addition of a router, a system of 10
computers needs merely ten wires instead of 10 × 10 = 100
connections.

3. Enabling infinite scaling: Let us now discuss interconnecting
hundreds of thousands to billions of machines. A single router
cannot scale to that extent; nonetheless, a router is an
independently programmable computer unit. This implies that
two or more routers may be connected, enabling infinite scaling.

4. Utilizing ubiquitous public infrastructure via a mo dem: By
now, we have constructed a network identical to the internet,
although it is only intended for individual use and cannot connect
with the outside world. This is where public infrastructure comes
in. The telephone system links an office to everyone worldwide,
making it the ideal wiring configuration for the Internet. A
modem is necessary for connecting networks to the telephone

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

30

system. This modem converts data from a network into data that
can be managed by the telephony architecture and vice versa.

5. Sending messages from one network to another: The
following step is to transmit the information from your network
to the target network. To accomplish this, the network must
establish a connection with an internet service provider (ISP). An
ISP is a service that administers specified routers that are
interconnected and also have access to the routers of other ISPs.
Therefore, the data from the host network is delivered to the
target network via the web of ISP networks.

To deliver a message to a system, it is important to identify
which computer it should be sent to. Therefore, every machine
connected to a network has a unique identifying address known
as an “IP address” (here, IP refers to internet protocol). It is an
address consisting of four integers separated by periods, such as
192.168.2.10. There are several versions of IP; currently, we are
in IPv4 and IPv6 iterations, depending on the region.

6. Assigning domain name to IP addresses: IP addresses are
intended for computers, but in an infinitely extensible internet, it
would be difficult for people to keep count of an ever-growing
number of addresses. To simplify matters, one may designate an
IP address with a domain name, a human-readable name.
Google.com is an excellent example of this — the domain name
is used in conjunction with the IP address 142.250.190.78.
Therefore, typing the domain name is the simplest way to access
a computer online.

7. Connected the internet to the web: The internet is a network
architecture that enables millions of machines to communicate
with one another. Several of these machines (web servers) can
feed web browsers intelligible messages. The web is an
application constructed on top of the internet’s infrastructure. It is
important to note that additional services, like email, have been
developed on top of the internet.

8. Connecting the internet to a private intranet or
extranet:Intranets are personal and bespoke networks confined to
an organization’s members. They offer participants a secure
gateway to access shared information, collaborate, and
communicate.
Extranets are quite similar to intranets, except that they enable
collaboration and sharing with other businesses. Typically, they
are employed to safely and confidentially transmit information to
customers and other enterprise stakeholders. Frequently, their
functions resemble those of an intranet: file and information
sharing, collaboration tools, message boards, etc.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

31

Intranets and extranets operate on the same infrastructure and adhere to
the same protocols as the internet.

How does the web work?
When we discuss the internet in common parlance, we typically refer to
the web – although the two terms are not interchangeable. If the internet
can be understood as a network of highways, then the web will be the
network of restaurants, toll booths, gas stations, etc., built along it. The
main job of the internet is to access the web. However, it can perform
other tasks like supporting cloud storage on computers, keeping the
software as a service (SaaS) apps online, automatically updating the
computer’s time, etc.

On the other hand, the web comprises multiple computers connected to
the internet called clients and servers.

Clients are internet-connected devices of a web user (such as a computer
linked to Wi-Fi or a mobile phone) and the online-accessing software
installed on such systems (generally a web browser).

Servers store websites, applications, and their associated data and
activities. When a client device requests access to a website, a replica of
the webpage is received from the server to the client’s computer. The
webpage is then exhibited in the client’s web browser.

When a user inputs a domain name or uniform resource locator (URL)
in the browser, the domain name system (DNS server) is contacted to
get the actual IP address of the website’s server.

The browser then transmits an HTTP or HTTPS request message back
to the server, asking the server to transmit a copy of the web page to the
client. This message and all other data transferred between the client and
server are sent via the TCP/IP protocol across your internet connection.
If the server authorizes the client’s request, it returns a “200 OK” status
code. The server then begins transmitting the site’s contents to the client
as a sequence of data packets. The browser constructs an entire web
page from the packets and starts displaying it. This request, response,
and information exchange happens via the internet infrastructure.

3.2 Types of Internet Services

As mentioned earlier, the internet can enable various services, not just
web access. Some of the key types of Internet services are:
1. Communication services: To exchange data/information among

individuals or organizations, the Internet enables communication
services. This mainly includes VoIP and video conferencing.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

32

Voice over Internet protocol (VoIP) enables users to place voice calls
over the Internet compared to a conventional (or analog) phone
connection. Other VoIP services allow you to contact anybody with a
mobile number, encompassing long-distance, cellular, and even
local/international connections.

Video conferencing technology enables two or more individuals in
separate locations to connect visually and in real-time. It includes
persons in different places using video-enabled devices and broadcasting
real-time speech, video, texts, and slideshows via the internet.

Other communication services based on the Internet include email,
internet relay chat (IRC), and list server (LISTSERV) used for
asynchronous text communication, instant messaging, and group
announcements, respectively.

2. File transfer services: We utilize file transfer to exchange,

transmit, or send a document or logical data item among many
individuals or computers, both locally and remotely. Data files
may comprise documents, videos, photos, text, or PDFs. They
may be shared via internet downloading and uploading. File
transfer protocol (FTP) is one of the most common internet
protocols used for this purpose.

3. Directory services: A directory service is a collection of
software that maintains information about the organization, its
customers, or both. Directory services are responsible for
mapping network resource names to network addresses. It offers
administrators and users transparent access to all network
computers, printers, servers, and other devices. It is also an
important backend service provider for and by the internet.

Domain number system (DNS) and lightweight directory access
protocol (LDAP) are the most commonly used directory services.
A DNS server stores a map of computer hostnames and other
domain names to IP addresses. LDAP is a collection of open
protocols to obtain centralized network access to stored data. It is
also a mechanism for cross-platform authentication.

4. E-commerce and online transactions: E-commerce allows the
customer to purchase a service or product directly from the
vendor, at any time or anywhere on the planet. When IBM started
offering hardware and software for computers over the Internet, it
was one of the first instances of e-commerce. Since then, this
service has grown in use tremendously. E-commerce uses the
web to enable financial exchanges so that data packets can
translate into their real-world monetary equivalents.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

33

5. Services for network management: Network
management services are some of the most critical and valuable
Internet services for IT administrators. They assist in avoiding,
monitoring, diagnosing, and resolving network-related issues.
Two services are mainly used for this purpose – ping and
traceroute.

The ping utility checks the host machine’s availability and the
time required to react to any internet control message protocol
(ICMP) transmissions. It guarantees that all requests issued by a
computer reach the web server without packet loss. In the
meantime, the traceroute identifies and displays all potential
paths from query to response, as well as the turnaround time for
each route.

6. Time services: Greenwich Mean Time (GMT) or Coordinated
Universal Time synchronizes computer clocks (UTC). Network
time protocol (NTP) is an established internet time service that
syncs and adjusts the computer clock accurately to all these
standards. All Windows time variants released after Windows
2000 synchronize with an NTP server. NTPsec is primarily a
secured version of NTP.

7. Search engine services on the web: When users search for a
web page through a search engine rather than the domain name,
the search engine examines the web crawler’s index of all pages.
It will study the search phrase and compare it to the database,
including how often the search terms appear on a webpage, where
they appear on the site, whether they appear together, etc. It
analyzes this information to determine which websites best fit
your search query.
The results are then shown in order, with those that best fit the
search keyword appearing initially. It is important to note that
search engines can accept funds from commercial entities to
prioritize their websites in the results of a particular query. This is
an advert, and the search engine results will be labeled as such.
Automatic Network Address Configuration: Automatic Network
Addressing assigns a unique IP address to every system in a
network. A DHCP Server is a network server that is used to
assign IP addresses, gateways, and other network information to
client devices. It uses Dynamic Host Configuration Protocol as a
common protocol to reply to broadcast inquiries from clients.

8. Network Management Services: Network management services
are another essential internet service that is beneficial to network
administrators. Network management services aid in the
prevention, analysis, diagnosis, and resolution of connection
problems. The two commands related to this are:

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

34

ping: The ping command is a Command Prompt command that is
used to see if a source can communicate with a specific
destination & get all the possible paths between them.
traceroute: To find the path between two connections, use the
traceroute command.

9. Time Services: Using facilities included in the operating system,
you may set your computer clock via the Internet. Some services
are :
Network Time Protocol (NTP): It is a widely used internet time
service that allows you to accurately synchronize and adjust your
computer clock.
The Simple Network Time Protocol (SNTP): It is a time-keeping
protocol that is used to synchronize network hardware. When a
full implementation of NTP is not required, then this simplified
form of NTP is typically utilized.

10. Usenet: The ‘User’s Network’ is also known as Usenet. It is a
network of online discussion groups. It’s one of the first networks
where users may upload files to news servers and others can view
them.

11. News Group: It is a lively Online Discussion Forum that is
easily accessible via Usenet. Each newsgroup contains
conversations on a certain topic, as indicated by the newsgroup
name. Users can use newsreader software to browse and follow
the newsgroup as well as comment on the posts. A newsgroup is
a debate about a certain topic made up of notes posted to a central
Internet site and distributed over Usenet, a global network of
news discussion groups. It uses Network News Transfer Protocol
(NNTP).

3.3 Internet Communication

The exchange of information, data, or messages over the Internet
between two or more people or devices is referred to as Internet
communication.

It makes use of a variety of communication technologies, including
email, instant messaging, social media, video conferencing, and (Voice
over Internet Protocol) VoIP Services. Internet communication allows
people to connect with each other from anywhere in the world and at
any time, as long as they have Internet access. It has transformed the
way people communicate, making it faster, easier, and more convenient
than ever before. Internet communication is also important in business
and commerce, allowing businesses to communicate in real-time with
their customers, suppliers, and employees. It has created new
opportunities for remote work, collaboration, and international trade.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

35

We all will accept that the Internet is a revolutionary invention for
humanity. It not only offers an advanced methodology of
communication but also benefits us in multiple ways. Today we will talk
about internet communication and how it has changed the way we
communicate. The Internet gives us wings to access information within
seconds and connects the world. It acts as a communication bridge
between two entities. With more than 4.95 billion users internet has
become the perfect solution for audio and video communication.

In simple language, we can understand internal communication as a
method of connecting and talking to people using the Internet instead of
services offered by telecommunication service providers like phones,
calls, and text messaging. From App to App calling services to virtual
telephony solutions, the Internet enables people to connect with anyone
globally within a few seconds. Internet communication is quite a reliable
alternative to traditional phone calling services. Web communication
services are relatively cheaper than phone lines and are a reliable source
of virtual interaction that has a vast range of benefits for its users.

Internet communication enables you to communicate with people over
the web. The communication process takes place in any form, such as
messages, voice, video calls, etc. The biggest reason people are shifting
towards this technology for communication is cost savings. You will
find several applications over the web that allow app-to-app, click-to-
call, and app-to-phone call services without imposing any calling charge
for web interaction facility. WhatsApp, Skype, Google Meet, and
Messenger are some of the most popular applications that allow users
easier access to communication services. Internet communication
services not only benefit users but also help businesses to communicate
with overseas customers at the most cost-efficient price. Corporations
have agreed that they depend on the Internet for smoother functioning of
their services.

The Internet offers many advanced options that allow users to have
seamless two-way communication. The use of the internet in
communication enables users to connect and interact with others without
facing any difficulties. It has become a significant mode of connectivity
nowadays which benefits the users as well as the businesses in many
ways. Let’s find out some of the most influential and prominent modes
used for establishing quick and hassle-free communication over the web.

Various forms of Internet communication
1. Instant Messaging

Instant messaging (IM) is a popular form of Internet
communication that enables users to exchange text-based
messages, emoji, and sometimes voice or video calls in real time.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

36

It has become a preferred communication tool for both personal
and commercial purposes, allowing millions of users to connect
with each other instantly.

In the business world, IM has gained significant popularity as a
means of communication between employees, and it has also
been used to reach out to clients efficiently. It allows for quick
and effective passing of information, leading to improved
productivity and enhanced customer service. Instant messaging
can be accessed through various platforms, including messaging
apps, social media, and web-based applications, making it easily
accessible and available for use.

IM's popularity is due to its simplicity and ease of use. Users can
instantly send and receive messages, receive notifications, and
access other features such as file sharing, group chats, and video
calls. It has revolutionized the way people communicate, offering
an efficient and effective means of communication, without the
need for phone calls or email.

Instant messaging is a highly used online chat technology that
allows users to communicate with others in real-time via an
internet-based chat room.

These systems are specially designed communication tools that
enable users to have an uninterrupted communication facility
when a user logs into a dedicated instant messaging system. Once
he starts his login session, he notifies other users about his
presence. Instant messaging tools allow users to chat with each
other synchronously. The best thing about these communication
tools is, they not only save time but also allow users to have
communication facilities without paying a single penny. All they
have to pay for internet connection charges and they will be able
to communicate with others.

Instant messaging is quite beneficial in several aspects. With the
help of these messaging tools, employees can connect with their
managers and colleagues to establish communication remotely.
The messaging tool eliminates the need to place a call to access
information and helps you to have a much easier communication
interface for instant information sharing. Yahoo Messenger,
Google Messenger, MSN, and Messenger are a few popular
instant messaging tools that help users to communicate
irrespective of their geographical locations.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

37

2. VOIP and Internet Telephony System
An Internet Telephony System (ITS) is a system that uses VOIP
technology to enable communication over the Internet. VOIP is a
technology that allows voice communications to take place over
the Internet rather than traditional telephone networks that rely on
circuit-switched connections. Voice signals are broken down into
digital data packets that can be transmitted over the internet and
then reassembled at the receiving end with VOIP solutions.

It can include hardware like IP phones, softphones, and Cloud-
Based PBX Systems, as well as software applications for voice
and video calling. Businesses can benefit from modern cloud
telephony features such as call queuing, intelligent call routing,
conversational AI, Multi-Level IVR, and conferencing by
partnering with a VoIP service provider. Furthermore, VoIP
phone solutions have several advantages over traditional phone
systems, including lower costs, greater flexibility, and the ability
to integrate with other communication tools such as CRM and
other tools.

With VoIP technology, businesses can streamline communication
processes and save on costs, while also taking advantage
of Modern Features to enhance customer engagement and
satisfaction. The VoIP phone industry is experiencing rapid
growth, as evidenced by the market's impressive valuation of $40
billion in 2022. Experts predict that the industry will continue to
expand, with a projected compound annual growth rate (CAGR)
of 10% from 2023 to 2032.

Internet telephone services utilize the Internet as a bridge that
helps them to route telephonic calls to designated numbers
instead of traditional phone lines. The working functionality of
VoIP is easily understandable, and it sends voice packets using IP
instead of PSPN (public switch telephone network). Once the
voice packets reach the pre-decided destinations, it again gets
converted into voice data for the receivers.

Internet phone systems are widely being used by users and
businesses that need to communicate globally. They are cost-
effective and allow you to call globally without imposing high
charges.

3. Email
Email, short for electronic mail, is a type of digital
communication that allows individuals and businesses to send
and receive messages via the Internet. Email messages can
include text, images, documents, and other file types, and they

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

38

can be sent to one or more recipients. An email has several
advantages for both personal and business use. Email is a
convenient way to stay in touch with family and friends, share
photos and documents, and organize events and schedules for
personal use.

Email can be a valuable tool for businesses to communicate with
their employees, customers, and partners. Businesses can use it to
send important documents, invoices, and other files, as well as
customer support and marketing messages. Furthermore, when
compared to traditional mail, email is a more cost-effective and
environmentally friendly communication method. It allows you
to store and organize messages in a digital format, making it
simple to search for and refer to previous conversations.

As per a recent survey, you will be amazed to know that the
number of active email users will touch 4.3 billion by 2023. It is
one of the most effective modes of communication and an
advanced way of exchanging media files. Users can have the
benefits of these communication facilities without paying any
charges. Email is considered one of the most reliable and secure
communication channels today, which is why businesses prefer
to communicate over email.

Users can create their email ID through web portals like
Microsoft Outlook, Gmail, and Yahoo. You only need an active
email ID if you want to communicate through the same. Once
your ID is activated, you can send messages to the recipient’s
email address. It is a widely used communication channel by
business sectors. The fact is that Emails have become a
professional way of communication. 62.86% of businesses prefer
email as their prime mode of official communication.

To communicate with someone through Email users need to
follow some set pattern of guidelines and steps. They need to
mention the recipient’s mail address, subject, and text body
before sending an email. Emails allow you to go paperless and
enable users to send and receive digitalized documents over the
channel. With the help of electronic mail, users can connect with
multiple people simultaneously and communicate without facing
any issues.

4. Video Conferencing
Video conferencing is an essential method of Internet
communication for both personal and business purposes. Video
conferencing can be used in personal contexts to stay in touch
with friends and family who live far away, providing a more

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

39

personal and engaging experience than other forms of internet
communication. Furthermore, video conferencing can be a
valuable tool for remote work situations, allowing people who
work from home or in different locations to communicate and
collaborate in real-time with colleagues and clients.

Video conferencing can be used for a variety of purposes in the
business world. It allows remote teams to collaborate in real-
time, share documents and ideas, and hold meetings without
having to travel. This can save time and money while also
improving communication efficiency. Sales calls, customer
service interactions, and virtual events such as webinars and
conferences can all benefit from video conferencing.
Furthermore, video conferencing can enable businesses to reach a
global audience because it enables communication with people in
different parts of the world without the need for travel.

5. Social Networking Platforms
Social media is one of the most popular Internet communication
methods used by individuals and businesses around the world on
a daily basis. Users can connect and interact virtually through
these platforms, which provide tools for creating and sharing
content, communicating with friends, family, and colleagues, and
connecting with others who share similar interests. Facebook,
Twitter, Instagram, LinkedIn, and WhatsApp are some of the
most popular social networking platforms, each catering to
different audiences and use cases.

WhatsApp, for example, allows users to communicate for free
through messaging, audio, and video, whereas LinkedIn focuses
on professional networking, allowing users to connect with
colleagues, search for jobs, and showcase their skills and
experience. Social networking platforms have become an
essential part of modern communication, influencing how
individuals and businesses interact with one another and making
communication with friends and customers faster and easier.
Businesses can increase brand awareness by using social media
platforms, which allow them to interact with customers and
provide useful feedback, improving consumer retention.
Additionally, social media portals can be used for advertising,
promotional campaigns, and market analysis.

Social media is an integral part of our lives and is considered one
of the most popular internet communication methods today. You
all will be aware of the social media platforms like Facebook,
Instagram, Twitter, WhatsApp, etc. These channels have gained
immense popularity among every age group.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

40

The social media platform helps users instantaneously communicate
with others and offers several features that enhance user experience
while communicating. Social media channels are not just limited to chat
room facilities. Users are allowed to access multiple features while
communicating. They can make video and audio calls along with a chat
room facility. Also, they can share various documents and media files
over web channels.

3.4 Internet Protocol

Transmission Control Protocol/Internet Protocol (TCP/IP)
The TCP/IP suite is the core set of protocols governing the Internet and
many private networks. Developed in the 1970s and early 1980s under
the auspices of DARPA (Defense Advanced Research Projects Agency),
TCP/IP was designed to facilitate robust and flexible communication
across diverse and interconnected networks. The suite is named after its
two main protocols: Transmission Control Protocol (TCP) and Internet
Protocol (IP).

Key Components
Transmission Control Protocol (TCP): TCP is responsible for ensuring
reliable data transmission between devices. It handles the breakdown of
large data messages into smaller packets, which are then sent over the
network. At the receiving end, TCP reassembles these packets into the
original message. TCP ensures data integrity and correct ordering
through error detection and correction mechanisms, retransmitting lost
packets and acknowledging received packets.

Internet Protocol (IP): IP handles addressing and routing. Each device
on a network is assigned an IP address, which is used to identify it
uniquely. IP determines the best path for data to travel from the source
to the destination, navigating through various networks and routers.

Functionality and Process
TCP/IP operates at multiple layers, each with specific functions:
Application Layer: This layer includes protocols like HTTP, FTP, and
SMTP, which are used by applications to communicate over the
network.

Transport Layer: This is where TCP operates. It establishes a connection
between two devices, manages data flow, and ensures data integrity.
Internet Layer: IP operates here, dealing with packet routing and
addressing.

Link Layer: This layer involves protocols related to the physical
transmission of data over a network medium (e.g., Ethernet).

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

41

Working Mechanism
The process begins when an application wants to send data. The data is
passed to the transport layer, where TCP breaks it into manageable
packets, each with a header containing sequencing information. These
packets are handed over to the internet layer, where IP adds its own
header, including source and destination IP addresses.

The packets are then transmitted over the network. Each router along the
path uses the IP header to decide where to send the packet next, ensuring
it moves closer to its destination. At the destination, TCP reassembles
the packets into the original message and passes it to the appropriate
application.

Significance and Applications
TCP/IP is essential for the Internet’s functioning. It allows diverse
devices and networks to interoperate seamlessly, enabling applications
like web browsing, email, file transfer, and streaming. Its robustness and
scalability have made it the standard networking protocol suite
worldwide.

HyperText Transfer Protocol (HTTP)
HTTP is an application-level protocol used primarily for transferring
hypertext documents on the World Wide Web. Developed by Tim
Berners-Lee in the early 1990s, HTTP has become the foundation of
data communication on the web.

Key Concepts
Request-Response Model: HTTP operates on a client-server model
where the client (e.g., a web browser) sends a request to the server,
which then processes the request and returns a response. This model
underpins all web interactions.

Statelessness: HTTP is stateless, meaning each request from a client to a
server is independent. The server does not retain any information about
previous requests. This simplifies server design but requires
mechanisms like cookies and sessions to maintain state across multiple
requests.

HTTP Methods
HTTP defines several methods for client-server communication:
GET: Requests data from a specified resource.
POST: Submits data to be processed to a specified resource.
PUT: Updates a current resource with new data.
DELETE: Deletes a specified resource.
HEAD: Similar to GET, but retrieves only the headers, not the body.
Headers and Body

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

42

HTTP messages consist of:
Headers: Provide metadata about the request or response (e.g., content
type, content length, and encoding).
Body: Contains the data being transmitted (optional, depending on the
method).

HTTP Versions
HTTP/1.0: The initial version used basic request-response
communication.
HTTP/1.1: Introduced persistent connections (allowing multiple
requests and responses between a client and server), chunked transfer
encoding, and additional cache control mechanisms.
HTTP/2: Improved performance by enabling multiplexing (sending
multiple requests and responses simultaneously over a single
connection), header compression, and more efficient use of network
resources.
HTTP/3: Uses QUIC (Quick UDP Internet Connections) instead of TCP,
providing faster connection establishment, improved security, and better
performance over high-latency networks.

Security with HTTPS
HTTPS (HTTP Secure) is an extension of HTTP that uses SSL/TLS to
encrypt data transmitted between a client and a server. This ensures data
integrity, confidentiality, and authentication, protecting against
eavesdropping and man-in-the-middle attacks.

Secure Sockets Layer/Transport Layer Security (SSL/TLS)
SSL and its successor TLS are cryptographic protocols designed to
secure communication over a computer network. SSL was developed by
Netscape in the mid-1990s to protect Internet communications. TLS,
developed as an enhancement to SSL, provides improved security
features and is the modern standard for secure communication.

Key Features
Encryption: Encrypts data to ensure confidentiality. Even if intercepted,
the data cannot be read without the appropriate decryption key.
Authentication: Uses digital certificates to verify the identities of the
communicating parties, ensuring that data is sent to and received from
the correct source.
Integrity: Ensures that data is not tampered with during transmission.
Any alterations can be detected.

How SSL/TLS Works
The SSL/TLS handshake process establishes a secure connection
between a client and server:

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

43

Client Hello: The client sends a hello message to the server, specifying
supported encryption algorithms and other settings.
Server Hello: The server responds with its chosen encryption algorithms
and provides its digital certificate.

Certificate Verification: The client verifies the server’s certificate
against a list of trusted Certificate Authorities (CAs). If valid, the
process continues.

Key Exchange: The client and server exchange cryptographic keys to
establish a shared secret used for symmetric encryption.
Secure Connection: With the handshake complete, the secure connection
is established, and encrypted data transmission begins.

TLS Versions
SSL 2.0 and SSL 3.0: Early versions with significant security flaws,
now deprecated.
TLS 1.0: Improved upon SSL 3.0, addressing several vulnerabilities.
TLS 1.1 and TLS 1.2: Introduced stronger encryption algorithms and
additional security features.
TLS 1.3: Simplified the handshake process and enhanced security and
performance. It eliminates outdated cryptographic algorithms and
reduces latency by combining steps in the handshake process.

Applications and Importance
SSL/TLS is crucial for securing various types of internet
communication:
Web Browsing: HTTPS secures data between web browsers and servers,
protecting against eavesdropping and tampering.
Email: Protocols like SMTPS, IMAPS, and POP3S use TLS to secure
email communication.
VPNs: TLS can be used to secure virtual private networks (VPNs),
ensuring secure remote access to network resources.
VoIP: Secures voice over IP (VoIP) communications, protecting against
interception and eavesdropping.
Integration of TCP/IP, HTTP, and SSL/TLS
The interaction between TCP/IP, HTTP, and SSL/TLS protocols creates
a comprehensive framework for internet communication:
TCP/IP: Provides the fundamental transport and routing mechanisms,
ensuring data can be transmitted across diverse networks reliably.
HTTP: Sits atop TCP/IP, enabling the transfer of hypertext documents
and facilitating the functioning of the World Wide Web.
SSL/TLS: Integrates with HTTP to form HTTPS, ensuring that data
transmitted over the web is encrypted and secure.
In practical terms, when a user accesses a secure website:

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

44

TCP/IP Connection: The user’s device establishes a TCP connection
with the web server using IP addressing and routing.
SSL/TLS Handshake: The device and server perform an SSL/TLS
handshake to create a secure connection.
HTTPS Request: The device sends an HTTPS request over the secure
connection. HTTP operates as usual, but the underlying transport layer
is encrypted by SSL/TLS.
Data Transmission: The server processes the request and sends an
encrypted response back to the user’s device. The device decrypts the
response and displays the web page.
The protocols TCP/IP, HTTP, and SSL/TLS are foundational to the
functioning and security of modern Internet communication. TCP/IP
ensures reliable and efficient data transport across diverse networks.
HTTP facilitates the transfer of hypertext documents, enabling the
World Wide Web. SSL/TLS secures these communications, ensuring
data integrity, confidentiality, and authentication. Together, these
protocols create a robust and secure framework that supports the vast
array of online activities we rely on daily, from browsing and emailing
to streaming and online transactions. As technology evolves, these
protocols continue to adapt, ensuring the internet remains a secure and
efficient platform for global communication and information exchange.

Self-Assessment Exercise(s)

(1) Which protocol is primarily used for secure communication over

the World Wide Web?
A) FTP
B) HTTP
C) HTTPS
D) SMTP
Answer: C) HTTPS

(2) What does the acronym FTP stand for, and what is its primary

purpose?
A) File Transfer Protocol; used for transferring files between

computers
B) Fast Transmission Protocol; used for quick data transmission
C) File Tracking Protocol; used for tracking file usage
D) File Transfer Pathway; used for creating pathways for file

transfers
Answer: A) File Transfer Protocol; used for transferring files between
 computers

(3) Which protocol is used for sending emails from a client to a

server?
A) IMAP

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

45

B) POP3
C) SMTP
D) HTTP
Answer: C) SMTP

(4) What is the primary function of the TCP/IP protocol suite?
A) To provide a set of rules for file transfer over the internet
B) To establish a connection-oriented communication service
C) To manage domain names on the internet
D) To enable internet routing and data packet delivery
Answer: D) To enable internet routing and data packet delivery

(5) Which of the following services is primarily used for real-time

communication over the internet?
A) Email
B) File Transfer Protocol (FTP)
C) Voice over Internet Protocol (VoIP)
D) HyperText Transfer Protocol (HTTP)
Answer: C) Voice over Internet Protocol (VoIP)

Conclusion

Internet services, communication, and protocols are integral components
that collectively ensure the functionality and efficiency of the Internet.
The vast array of internet services enables users to perform a multitude
of tasks, from browsing the web and sending emails to streaming media
and engaging on social platforms. These services rely on effective
communication facilitated by a suite of protocols that govern data
exchange, ensuring seamless interaction between disparate systems and
devices. Protocols like TCP/IP, HTTP, SMTP, and FTP provide the
necessary framework for reliable and accurate data transmission,
underpinning the robustness and interoperability of the Internet.
Together, these elements create a cohesive and dynamic digital
ecosystem that supports global connectivity and information exchange.

 4.0 Summary

Internet services, communication, and protocols form the backbone of
the modern Internet, enabling a wide range of activities and applications.
Internet services refer to various online services such as web browsing,
email, file transfer, streaming, and social media, provided by different
platforms and servers over the Internet. These services rely on a network
of interconnected devices, including computers, servers, and other smart
devices, to exchange information and provide users with access to

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

46

digital resources. The interaction between users and these services is
facilitated by web browsers, email clients, media players, and other
applications designed to connect to the internet and handle specific types
of data.

Communication on the Internet is governed by a set of rules and
standards known as protocols. These protocols ensure that data is
transmitted accurately and efficiently between devices. Key protocols
include the Transmission Control Protocol (TCP) and the Internet
Protocol (IP), which work together to route data packets across networks
and ensure they reach their intended destinations. Other important
protocols include Hypertext Transfer Protocol (HTTP) for web traffic,
Simple Mail Transfer Protocol (SMTP) for email, and File Transfer
Protocol (FTP) for file transfers. These protocols define how data is
formatted, transmitted, and received, allowing different systems to
communicate seamlessly, regardless of their underlying hardware or
software differences. By adhering to these standardized protocols, the
internet maintains its robustness, reliability, and interoperability.

 5.0 References/Further Reading

Comer, D. E. (2018). The Internet book: everything you need to know

about computer networking and how the Internet works.
Chapman and Hall/CRC.

Hersent, O., Boswarthick, D., & Elloumi, O. (2011). The internet of

things: Key applications and protocols. John Wiley & Sons.

Ciubotaru, B., Muntean, G. M., Ciubotaru, B., & Muntean, G. M.

(2013). Network communications protocols and
services. Advanced Network Programming–Principles and
Techniques: Network Application Programming with Java, 29-
52.

Ciubotaru, B., Muntean, G. M., Ciubotaru, B., & Muntean, G. M.
(2013). Network communications protocols and
services. Advanced Network Programming–Principles and
Techniques: Network Application Programming with Java, 29-
52.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

47

Unit 4 Web Application Development

Contents

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 Overview
3.2 Types of Web Applications
3.3 Web application development process
3.4 Web Application Development Validation and

Deployment
3.5 Benefits of Web Applications

4.0 Summary
5.0 References/Further Readings

1.0 Introduction

A web application is a software program that runs directly in a web
browser. Unlike traditional desktop applications, it doesn’t require
downloads or installations. Many types of web applications are built
using client-side scripts (like HTML, JavaScript, or CSS) and server-
side scripts (like PHP or ASP). They interact with users by sending
requests to the server, which processes the data and returns the results.
This setup allows web applications to perform various functions, from
displaying content to managing user data. They’re accessible from any
device with an internet connection, making them versatile for many
uses, from personal blogs to complex e-commerce sites. Web app
development services typically follow a meticulous process in creating a
custom web application, involving careful planning, design, coding,
testing, and maintenance.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:
• Understand Internet.
• Identify various services the Internet provides for the users.
• Explain the Internet communication channels
• Explain some common Internet Protocols

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

48

3.0 Main Content

3.1 Overview

A decade ago, web pages were mostly static, with a few images and
videos scattered around. In 2005, thanks to Ajax, it made it possible to
create better, faster, and more interactive web applications. A web
application, also known as a web app, is nothing but a computer
program that uses a web browser to perform a specific function. A web
application is a client-server program that comprises a client-side and a
server-side. The user enters data through the client side (front-end),
while the server side (back-end) of the application stores and processes
the information. For example, shopping carts, content management
systems, and online forms are typical web applications. Both enterprises
and individuals develop web applications to fulfill different purposes.
Web apps help integrate the tailored experience of native apps with easy
access on a website browser from any device. For example, LinkedIn,
Basecamp, MailChimp, and even Facebook, have web apps that provide
immersive and tailored experiences like the native apps directly from the
browser. Hence, web application development is gaining a lot of
popularity in almost all industries, including banking, eCommerce,
education, healthcare, and more.

How does a Web Application Work?
Web applications are accessed over a network and need not be
downloaded. Instead, users can access web applications through
browsers like Google Chrome, Mozilla Firefox, Opera, or Safari. A web
application is built around three components- a Web Server, an
Application Server, and a Database. The web server manages requests
from the client, the application server processes requests, and the
database stores the information. A typical web application workflow
looks like this: 1 User triggers a request to the web server, either through
a web browser or

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

49

3.2 Types of Web Applications

Now that we’ve covered the various aspects of web applications let’s
deep dive into the different categories of web applications. Web apps are
classified based on their functionalities, tools, and technologies.

1. Static Web Applications

Static web applications are simple web-based applications that
deliver pre-rendered content to users without server-side
processing or dynamic content generation. Each page within a
static web application is fixed and does not change in response to
user interactions or data inputs. These applications consist of
HTML, CSS, and JavaScript files that are directly served to the
client's browser. As a result, static web applications are fast,
secure, and easy to deploy, but they lack the interactivity and
real-time data manipulation capabilities of dynamic web
applications. They are best suited for use cases like personal
blogs, portfolios, and informational websites where content
changes infrequently. These are the simplest types of web
applications built using HTML and CSS, suitable for creating
portfolios or digital brochures. As the name suggests, the content
only changes if manually updated by the developer. Static web
applications are straightforward to create and host, as they don’t
require extensive server-side processing. This option is a cost-
effective solution for individuals or small businesses needing a
simple online presence. However, their simplicity also means
limited functionality.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

50

2. Dynamic Web Applications
Dynamic web applications are sophisticated web-based
applications that generate content dynamically based on user
interactions, inputs, or real-time data. Unlike static web
applications, they involve server-side processing, where scripts
(such as PHP, Python, Ruby, or Node.js) run on the server to
construct web pages on-the-fly before sending them to the client's
browser. This allows for interactive features, personalized
content, and the ability to connect to databases to retrieve and
update information. Dynamic web applications are used for a
wide range of purposes, including social media platforms, e-
commerce sites, and online forums, where user engagement and
up-to-date information are crucial. They offer a highly interactive
user experience but require more complex development and
server resources compared to static web applications. In contrast,
dynamic web applications are more complex and interactive.
They use client-side and server-side scripts (like JavaScript, PHP,
ASP, or JSP) to generate content in real-time. These web
application categories are connected to a database, allowing them
to provide personalized experiences based on user interactions
and preferences. They’re ideal for businesses, especially if your
top priorities are user engagement and content variability. Due to
their complexity, dynamic web applications are more challenging
to develop and maintain. They require a more robust hosting
environment and higher web development costs.

3. Single-Page Applications (SPAs)
SPAs are advanced web applications that provide a seamless,
dynamic user experience by loading a single HTML page and
dynamically updating content as the user interacts with the app.
Unlike traditional multi-page applications, SPAs avoid full page
reloads by using JavaScript frameworks such as Angular, React,
or Vue.js to manage the user interface and handle client-side
routing. This approach enhances performance and
responsiveness, creating an experience similar to that of a
desktop application. SPAs rely on AJAX calls to communicate
with the server in the background, fetching only the necessary
data and updating the page accordingly. This results in faster
transitions and a more fluid user experience, making SPAs ideal
for applications requiring a high degree of interactivity, such as
email clients, social media platforms, and complex dashboards.
SPAs load a single HTML page and dynamically update content
as users interact with the app. These categories of web
applications are ideal for platforms where user experience and
speed are critical, such as:

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

51

i. Social media platforms
ii. Email clients
iii. Cloud-based software

The benefit is that this web app type avoids reloading the entire
page with each user action, leading to a smoother and faster user
experience. However, they also come with challenges,
particularly in SEO optimization and initial load times, as the
entire application must be loaded simultaneously. SPAs are built
using JavaScript frameworks like Angular, React, or Vue.js,
which handle the dynamic loading of content and user interface
elements.

4. Multi-Page Web Applications (MPAs)

MPAs are traditional web applications where each interaction or
request from the user results in the loading of a new page from
the server. This architecture involves multiple HTML pages, each
corresponding to different views or sections of the application.
When a user navigates or performs an action, the browser makes
a request to the server, which processes it, retrieves or updates
data as needed, and then sends back a fully rendered HTML page.
MPAs are well-suited for complex applications with extensive
content and varied navigation paths, such as e-commerce
websites, blogs, and corporate portals. While MPAs can be less
fluid than Single-Page Applications (SPAs) due to frequent page
reloads, they offer advantages in terms of SEO and initial load
times, as well as easier implementation of analytics and tracking.
Unlike SPAs, MPAs reload the entire page from the server when
the user interacts with the application. These traditional web
application categories are more suitable for websites with a large
amount of content and diverse functionalities, such as:
eCommerce sites
Online catalogs
Educational platforms

MPAs can handle complex structures and vast databases more
efficiently than SPAs. They’re also better optimized for search
engines, as each page can be indexed separately. However, MPAs
often have slower page transitions and can be more resource-
intensive, as each new page needs a server request and page
reload. Developing MPAs typically involves a more extensive
back-end process to manage multiple pages and their interactions
with the server. When considering developing these web
application types, you can partner with a skilled website

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

52

development company to ensure a seamless and effective online
presence.

5. Progressive Web Applications (PWAs)
PWAs are a type of web application that leverages modern web
capabilities to deliver an app-like experience to users. They
combine the best features of web and mobile applications,
offering fast load times, offline functionality, and push
notifications. PWAs are built using standard web technologies
such as HTML, CSS, and JavaScript, and are designed to be
responsive, reliable, and installable. They can be added to a
user’s home screen without needing to go through an app store,
and they use service workers to manage caching and offline
access, ensuring that the app remains functional even without a
network connection. By providing a seamless, engaging user
experience across various devices, PWAs bridge the gap between
traditional web pages and native mobile apps. PWAs represent a
hybrid of regular web pages (or websites) and a mobile
application. They’re installable on a device’s home screen
without downloading from an app store. A key feature of PWAs
is the use of service workers or scripts running in the background,
enabling:
Offline functionality
Push notifications
Background data syncing
PWAs are also responsive and linkable, which can be shared via
a URL. They offer a high level of performance, engaging users
with smooth animations and no janky scrolling. Thus, these
categories of web applications are incredibly efficient, especially
for users with limited internet connectivity. Developers use
standard web technologies to build them, including HTML, CSS,
and JavaScript.

6. Content Management Systems (CMS)
CMS are software platforms designed to facilitate the creation,
management, and modification of digital content without
requiring extensive technical knowledge. They provide an
intuitive interface for users to easily add, edit, and publish
content, typically through a web-based editor. CMS platforms,
such as WordPress, Joomla, and Drupal, often include tools for
organizing content, managing media files, and handling user
permissions. They support extensibility through plugins and
themes, allowing users to customize the functionality and
appearance of their websites. By abstracting much of the
underlying code and technical complexities, CMS makes it
accessible for non-developers to maintain dynamic and feature-
rich websites, making them ideal for blogs, corporate websites, e-
commerce sites, and online publications. A CMS manages the

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

53

creation and modification of digital content, supporting multiple
users in a collaborative environment. CMS features vary widely,
including but not limited to:
• Web-based publishing
• Format management
• History editing
• Version control
• Indexing
• Search
They’re suitable for blogging, e-commerce, and news websites,
where you need to frequently update the content without
extensive technical know-how. CMS platforms
like WordPress, Joomla, and Drupal are popular choices, offering
templates and plugins for customization without needing to write
code from scratch. What’s more, CMSs provide a user-friendly
interface, allowing for easy updates and managing content.

7. eCommerce Web Applications
eCommerce web applications are online platforms designed for
buying and selling products or services over the Internet. They
provide a comprehensive suite of features to facilitate
transactions, including product catalogs, shopping carts, payment
gateways, and order management systems. These applications
often incorporate user account management, allowing customers
to track orders, save payment information, and manage their
preferences. eCommerce web applications are built to handle
various aspects of online retail, such as inventory management,
customer service, marketing tools, and analytics to track sales
and user behavior. By offering a seamless shopping experience
across multiple devices, these applications enable businesses to
reach a broader audience, enhance customer engagement, and
drive sales growth. Popular examples include platforms like
Shopify, Magento, and WooCommerce. These web application
types facilitate online buying and selling. They’re complex
systems that integrate various functionalities, including:
• Product displays or catalogs
• Product search and filtering
• Shopping carts
• Payment processing
• Customer account and order management
• Customer service tools
E-commerce web applications must provide a seamless, user-
friendly experience to encourage sales and repeat business. These
applications must be scalable to handle varying traffic and sales
volume levels. Also, security is paramount to protect sensitive
customer data, including payment information. Platforms

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

54

like Shopify, Magento, and WooCommerce are famous
examples, offering customizable templates and various plugins to
enhance functionality. E-commerce web applications have
revolutionized the retail industry, allowing businesses to reach a
wider audience and operate 24/7.

8. JavaScript-Powered Web Applications

JavaScript-powered web applications utilize JavaScript
extensively to create interactive, dynamic, and responsive user
experiences directly within the browser. These applications
leverage JavaScript frameworks and libraries such as React,
Angular, and Vue.js to manage the user interface, handle client-
side logic, and facilitate asynchronous communication with
servers through APIs. This approach enables real-time updates
and smooth transitions without the need to reload the entire page,
enhancing the overall performance and user experience.
JavaScript-powered applications can range from single-page
applications (SPAs) to more complex multi-page applications
that require dynamic content rendering and user interactivity. By
using JavaScript, developers can create rich web applications that
are capable of mimicking the look and feel of native desktop or
mobile apps while being accessible through web browsers.
JavaScript is a versatile programming language to create dynamic
and interactive user experiences. JavaScript can be used both on
the client side (in the browser) and the server side (with
technologies like Node.js), making it a powerful tool for full-
stack development. JavaScript-powered web applications are
known for their speed and efficiency; they can update content
without reloading the entire page. This functionality makes them
ideal for applications that require real-time data updates, such as:
Social media platforms
Online games
Collaboration tools
React, Angular, and Vue.js are examples of JavaScript
frameworks and libraries. They provide pre-written JavaScript
code to handle everyday tasks.

9. Rich Internet Web Applications (RIAs)

RIAs) are web-based applications that provide user experience
similar to that of traditional desktop applications, featuring rich
interactivity, responsive interfaces, and high levels of user
engagement. RIAs leverage advanced web technologies such as
HTML5, CSS3, JavaScript, and frameworks like Adobe Flash
(historically), Silverlight, or modern JavaScript libraries like
React and Angular to deliver sophisticated functionalities directly
in the web browser. These applications support multimedia, real-

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

55

time data processing, and dynamic content updates without
requiring full page reloads, ensuring smooth and seamless
interactions. RIAs are commonly used in areas like online
gaming, interactive data visualization, multimedia editing, and
complex business applications, offering users a robust and
immersive experience that goes beyond the capabilities of
traditional web applications. RIAs are advanced web application
types that deliver a user experience like desktop applications.
They use client-side frameworks to provide interactive features
and a richer user interface, such as:
Adobe Flash
JavaFX
Microsoft Silverlight
RIAs run inside web browsers but behave like desktop
applications, offering responsive, engaging user experience with
better data visualization and real-time interaction capabilities.
RIAs can process data and perform tasks without constantly
communicating with the server, reducing load times and
improving performance. However, they require plugins or
specific frameworks, which might limit accessibility and
compatibility across different devices and browsers.

10. Portal Web Applications

Portal web applications serve as centralized access points that
aggregate a wide range of information, services, and resources,
often catering to specific user groups or organizational needs.
These applications provide personalized user interfaces where
users can log in to access customized content, tools, and
applications based on their roles and preferences. Portal web
applications typically integrate various functionalities such as
email, forums, search engines, dashboards, and news feeds,
facilitating seamless navigation and interaction within a single
cohesive platform. They are widely used in corporate
environments, educational institutions, and governmental
organizations to streamline workflows, enhance communication,
and provide a unified user experience. By consolidating disparate
resources into a single entry point, portal web applications
improve accessibility and efficiency for users seeking
comprehensive and tailored information. Portal web
applications are gateways to various information, services, and
other applications. Enterprises often use them for internal
purposes or to provide customer-facing services, for example:

These web application types typically require user authentication,
offering personalized content and a centralized access point to
various resources. Portal web applications are designed to

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

56

aggregate content from different sources, providing a consistent
and integrated user experience. They can handle various
functionalities, including:
Search engines
Email systems
Forums
Newsfeeds

11. Animated Web Applications

Animated web applications incorporate dynamic visual elements,
transitions, and effects to enhance user engagement and
interaction. These applications leverage technologies such as CSS
animations, JavaScript libraries like GSAP (GreenSock
Animation Platform), or frameworks like WebGL to create fluid
animations and interactive experiences directly within the
browser. Animated web applications utilize motion to convey
information, guide users through workflows, and provide
feedback on user actions, resulting in a more intuitive and
enjoyable user experience. Whether through subtle micro-
interactions or complex animated interfaces, these applications
captivate users' attention, communicate messages effectively, and
differentiate themselves in a crowded digital landscape. These
applications focus on delivering rich visual content and
interactive elements using animations. They’re particularly
popular in fields that need high levels of user engagement, such
as:
• Online advertising
• Gaming
• Educational platforms

Animated web apps are built using technologies like CSS3, HTML5,
and WebGL, so developers can create complex yet engaging user
interfaces. They provide dynamic and visually appealing experiences,
capturing users’ attention and improving interaction. However,
developing these applications can be time-consuming and require
advanced design as well as programming skills. Furthermore, you need
to balance the animations to enhance rather than hinder the user
experience, especially considering performance and accessibility on
various devices.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

57

3.3 Web application development process

The number of steps in the web application development process can
vary between 5 and 9. But on average, 7 crucial steps are involved in the
web app development model. The same are as follows:
• Requirements review & proposal
• Planning & blueprints
• Web application design
• Copywriting & labeling
• Web application programming
• Testing & Launch
• Application maintenance

Stage1: Requirements review & proposal
Entrepreneurs and businesses mostly start with a set of ideas when they
think of launching a web application. These ideas slowly evolve into a
detailed document in which application goals, features, technology,
budget, vision, and plans are listed out.

By going through this document, the development team gets a clear
understanding of your app objectives, key goals, target audience, focus
industry, milestones, and other critical elements. This document is
followed up by discussions and questionnaires that help web developers
get further clarity into project goals.

Once the application development team has 100% clarity on everything
project-related, the proposal is prepared to document everything that
will be delivered.

Stage 2: Planning & blueprints
In Stage 1, both teams reached an understanding about the envisioned
web application. Now, it's time to create the roadmap that will be
followed to build it. With the help of insights gathered in the previous
stage of the web app development model, developers create a blueprint
including flowcharts and sketches that helps determine the overall
structure of the web application.

Flowcharts - also known as Sitemaps - show the relationship between
different web pages and help understand how the inner structure of your
website will look & work. Wireframes are often used for a visual
representation of the UI. Top web app development teams keep clients
in loop during this stage to make sure that the core of the application
comes out correctly.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

58

Depending on the complexity of the web application, the time spent on
Stage 2 will vary. If creating a Minimum Viable Product, be prepared to
dedicate around 2 weeks on this.

Stage 3: Web application design
Web application users don’t know what happens behind the frontend of
the app and how things work. All they interact with is the design part of
the application. Stage 3 is all about perfecting the design & interactive
elements of the web application. Designers work with color schemes,
graphics, icons, templates, user experience, style guides, transitions,
buttons, and much more to finalize the design aspect of the web
application.

After finalizing the initial mockups, they are shared with clients for
review & feedback. The design iterations and mockup changes go on
until the client gives a thumbs-up to everything. While the design team
is busy with the mockups and refinement, the development team is
mostly engaged with the programming part. So, Stage 3 and Stage 4
usually move ahead alongside each other.

Stage 4 - Web application programming
If Stage 3 is crafting the aesthetics of a car, Stage 4 is about putting
together the engine. App programming makes the envisioned features
function and builds the value component for the customers. In this stage,
frameworks are developed, APIs deployed, app features built, security
layers added, payment gateways integrated, and lots of other capabilities
crafted.

While coding complex web applications is a time-consuming process, a
lot depends on the technologies opted. Some technology stacks benefit
from libraries that have capabilities that can be tweaked and integrated
with ease. A lot also depends on the experience and expertise of the web
programmers working on your web application. Stage 4 forms the
biggest chunk of the web application model!

Stage 5 - Copywriting & labeling
Copy and labeling are less than 5% of the application development work
but without it, it is hard to make sense of everything you have built.
User experience and user interface greatly depend on the talent of the
Information Architect and Copywriter engaged for the
project. Usability and simplicity must be the epicenter of this step in the
web app development process.

Stage 5 is about finalizing the headlines, captions, labeling, copy, and
everything else that’s in the text form. The collaboration of the designer,

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

59

developer, copywriter, and IA is critical to executing all the copy in the
right place!

Stage 6: Testing & Launch
Testing the application after everything seems good to go is the most
important aspect of the web app development model. That’s because
there are hundreds of things that can go wrong even after you think
every inch of the application has been executed correctly.
Start by checking:

• Core features
• Forms
• Links
• Buttons
• Upload functionality (if any)
• Copy
• Transitions
• Performance
Even after double-testing everything, it is a good idea to launch your
web application initially in the beta version. If the stakes are high and
resources are limited, the web application can be unfolded in phases to
different audience groups.

Stage 7: Application maintenance
Be it a simple business website or a complex web application, every
digital product need routine checkups and enhancements. With the
passage of time, you will want to undertake product pivots, integrate
new features, and launch the App Version 2. This is why your app
development agreement should talk about application maintenance,
after-delivery support, and future upgrades.

3.4 Web Application Development Validation and Deployment

Now that we have discussed web app development and how it works, let
us take a look into other aspects, such as validation and deployment.
These two are some of the most critical aspects of developing a website
or web portal. Let us look into the same.

Once your web application has been created and is prepared for release,
testing is essential to ensure it runs properly before deployment. Fixing
bugs is insufficient on its own. As a result, testing is essential to the
creation of online applications.

A standard web application undergoes the following testing:
Usability testing
Usability testing for web applications involves evaluating a website's
design, functionality, and overall user experience by observing real

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

60

users as they interact with the site. The goal is to identify any usability
issues, such as confusing navigation, unclear instructions, or
cumbersome workflows, that may hinder users from effectively
accomplishing their tasks. By conducting usability testing, developers
and designers gain insights into user behavior, preferences, and pain
points, enabling them to make data-driven improvements to enhance the
website's accessibility, efficiency, and satisfaction. This process
typically includes various techniques like task-based testing, user
interviews, and heuristic evaluations, ensuring the final product meets
user needs and expectations.

Performance testing
Performance testing for web applications involves evaluating the
application's speed, responsiveness, and stability under various
conditions to ensure it can handle expected and peak user loads
effectively. This testing aims to identify performance bottlenecks, such
as slow page load times, server response delays, and resource utilization
issues, which can negatively impact the user experience. Techniques
such as load testing, stress testing, and scalability testing are employed
to simulate different user scenarios and traffic levels. By conducting
performance testing, developers can optimize the web application's
infrastructure, improve its efficiency, and ensure it remains reliable and
fast, even during high-traffic periods, thus providing a smooth and
satisfactory user experience.

Web App Security testing
Web app security testing involves evaluating a web application's
defenses against potential threats and vulnerabilities to ensure it can
protect sensitive data and maintain integrity, confidentiality, and
availability. This testing includes identifying and mitigating security
flaws such as cross-site scripting (XSS), SQL injection, cross-site
request forgery (CSRF), and other common exploits that attackers may
use. Techniques like penetration testing, vulnerability scanning, and
code reviews are employed to uncover and address security weaknesses.
By conducting comprehensive security testing, developers can fortify
the application against unauthorized access, data breaches, and other
cyber threats, ensuring a secure and trustworthy environment for users.

Quality assurance
Quality assurance (QA) testing for web applications is a comprehensive
process that ensures the application meets specified requirements and
standards, providing a high-quality user experience. This involves
systematic testing of all aspects of the application, including
functionality, usability, performance, security, and compatibility across
different devices and browsers. QA testing methods include manual
testing, automated testing, regression testing, and user acceptance

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

61

testing (UAT), aimed at identifying and fixing defects early in the
development cycle. By rigorously validating the application's features
and behavior, QA testing helps deliver a reliable, efficient, and user-
friendly web application, ultimately boosting user satisfaction and
reducing the risk of post-deployment issues.
Testing & bug fixing

Testing and bug fixing in web applications is a critical phase in the
development lifecycle aimed at ensuring the application operates
correctly and efficiently. This process involves systematically
identifying, documenting, and resolving defects or issues found during
various testing stages, such as functional, usability, performance, and
security testing. Testing helps uncover problems that may impact the
user experience or application performance, while bug fixing involves
addressing these issues through code corrections, adjustments, and
optimizations. Effective testing and prompt bug fixing are essential for
maintaining the application's stability, reliability, and quality, ensuring
that users encounter minimal errors and enjoy a seamless interaction
with the web application.

Browser compatibility testing
Browser compatibility testing for web applications involves evaluating
the application's performance and appearance across different web
browsers and their various versions to ensure consistent functionality
and user experience. This testing checks that web elements such as
layouts, fonts, images, and scripts render correctly and work seamlessly,
regardless of the browser being used. It addresses discrepancies caused
by differences in browser engines, HTML/CSS interpretations, and
JavaScript execution. By conducting thorough browser compatibility
testing, developers can identify and fix issues specific to certain
browsers, ensuring that the web application is accessible, visually
consistent, and fully operational for all users, regardless of their
preferred browsing platform.

Responsive testing
Responsive testing for web applications involves verifying that the
application's design and functionality adapt seamlessly across various
devices and screen sizes, including desktops, tablets, and smartphones.
This testing ensures that the user interface elements, such as navigation
menus, images, text, and interactive components, are displayed correctly
and are usable on different screen resolutions and orientations. By
simulating different device environments and screen sizes, responsive
testing identifies layout issues, performance inconsistencies, and
usability problems that could affect the user experience. Ensuring
responsiveness is crucial for delivering a flexible, user-friendly web

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

62

application that provides an optimal experience regardless of the device
used.

3.5 Benefits of Web Applications

In today's fast-paced digital landscape, businesses are continually
seeking innovative ways to stay competitive and connect with their
target audiences. Web application development has emerged as a
powerful tool that enables companies to enhance their online presence
and streamline various business processes. In this article, we will
explore the top seven benefits of web application development for
businesses and delve deeper into each of them.

Global Reach and Accessibility
One of the primary advantages of web applications is their ability to
provide global reach and accessibility. Unlike traditional desktop
applications that are confined to a specific device or location, web
applications can be accessed from any device with an internet
connection and a compatible web browser. This means that businesses
can reach a global audience without the need for users to install or
update software.

Benefit: Web applications provide a consistent and easily accessible
platform for engagement, ensuring that your business can connect with
customers across the street or on the other side of the world.

Cost-Effective Solution
Web application development offers a cost-effective solution for
businesses of all sizes. Unlike native mobile applications that require
separate development efforts for various platforms (iOS, Android, etc.),
web applications are platform-agnostic. This means that a single web
application can run on multiple devices and operating systems without
the need for extensive customization.

Benefit: The cost-effectiveness of web applications reduces
development expenses, allowing businesses to allocate resources more
efficiently and maximize their return on investment (ROI).

Scalability and Flexibility
As businesses grow and evolve, their software needs often change. Web
applications are highly scalable and flexible, allowing them to adapt to
changing requirements and increasing user loads. Whether you need to
add new features, accommodate a larger user base, or integrate with
third-party services, web applications can be easily modified and
expanded.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

63

Benefit: Scalability ensures that your software investment can grow
alongside your business, saving you the hassle and expense of
reinventing your entire application as your needs change.

Cross-Platform Compatibility
Web applications are designed to be cross-platform compatible,
meaning they can run seamlessly on various devices and operating
systems. Whether your users prefer Windows, macOS, iOS, Android, or
other platforms, they can access your web application with ease. This
versatility eliminates the need to develop and maintain separate
applications for different platforms.

Benefit: Cross-platform compatibility simplifies the development
process, reduces costs, and ensures a consistent user experience across
devices, fostering user satisfaction and loyalty.

Real-Time Updates and Maintenance
Web applications are hosted on web servers, allowing for real-time
updates and maintenance. This means that businesses can quickly
address bugs, security vulnerabilities, or performance issues without
inconveniencing users. Users don't need to manually download and
install updates, as web applications are automatically updated when they
access the latest version of the application.

Benefit: Real-time updates and maintenance ensure that your web
application remains secure and up-to-date, providing users with a
reliable and hassle-free experience.

Enhanced Security
Security is a top priority for businesses, especially when handling
sensitive data or transactions. Web application development offers
robust security features to protect both your business and your users.
With the right security measures in place, web applications can
safeguard against common threats such as data breaches, unauthorized
access, and malware.

Benefit: Enhanced security measures instill trust in users and protect
your business from potential threats, ensuring the confidentiality and
integrity of sensitive information.

Improved Analytics and Insights
Web applications provide valuable data and insights that can inform
business decisions and strategies. Through integrated analytics tools,
businesses can track user behavior, monitor engagement, and gather
actionable data. This information helps in understanding user

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

64

preferences, identifying areas for improvement, and optimizing the user
experience.

Benefit: Improved analytics and insights enable data-driven decision-
making, allowing businesses to adapt and refine their strategies to meet
user needs and drive growth.

Conclusion
In conclusion, web application development, whether done in-house or
by partnering with a reputable web application development company,
offers a wide range of benefits for businesses looking to thrive in the
digital era. The global reach and accessibility, cost-effectiveness,
scalability and flexibility, cross-platform compatibility, real-time
updates and maintenance, enhanced security, and improved analytics
and insights empower businesses to connect with their audience,
streamline operations, and stay ahead of the competition.

As technology continues to advance, embracing web application
development is a strategic choice that can drive innovation, efficiency,
and success in today's competitive business landscape. By harnessing
the power of web applications, businesses can position themselves for
growth, engage with their customers effectively, and adapt to the ever-
changing digital environment. Whether you're a startup or an established
corporation, web application development, with the right development
partner, can be a game-changer in achieving your business goals.

Self-Assessment Exercise(s)

(1) Which of the following is a common front-end technology used

in web development?
A) Python
B) Node.js
C) React
D) Django
Answer: C) React

(2) Which HTTP method is typically used to retrieve data from a

web server?
A) POST
B) PUT
C) DELETE
D) GET
Answer: D) GET

(3) What does REST stand for in the context of web services?
A) Reliable Event Service Transmission

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

65

B) Representational State Transfer
C) Rapid Exchange Service Technology
D) Remote Execution and Synchronization Transfer
Answer: B) Representational State Transfer

(4) Which of the following is a popular database management system

used in web applications?
A) MongoDB
B) MATLAB
C) Apache Hadoop
D) TensorFlow
Answer: A) MongoDB

(5) In the context of web applications, what is the purpose of an

API?
A) To analyze application performance
B) To provide a user interface for the application
C) To facilitate communication between different software

components
D) To secure the application against cyber attacks
Answer: C) To facilitate communication between different software
components

Conclusion

Web application development refers to the process of using client-side
and server-side programming to develop an application that is accessible
over the web browser. The web application development process begins
by; first, the developer trying to find a solution to a specific problem,
then designing the web app by choosing the appropriate development
framework. Next, the developer tests the solution and finally deploys the
web app.

 4.0 Summary

A web application is an application program that is stored on a remote
server and delivered over the internet through a browser interface. Web
services are web apps by definition and many, although not all, websites
contain web apps. Developers design web applications for a wide
variety of uses and users, from an organization to an individual for
numerous reasons. Commonly used web applications can include
webmail, online calculators, or e-commerce shops. While users can only
access some web apps by a specific browser, most are available no
matter the browser.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

66

 5.0 References/Further Reading

Sajja, P. S., & Akerkar, R. (2012). Intelligent technologies for Web

applications. CRC Press.

Su, J. M. (2023). WebHOLE: Developing a web-based hands-on

learning environment to assist beginners in learning web
application security. Education and Information Technologies, 1-
32.

Westfall, J., Augusto, R., & Allen, G. (2012). Beginning Android Web

Apps Development: Develop for Android Using HTML5, CSS3,
and JavaScript. Apress.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

67

MODULE 2 HTML FUNDAMENTALS

MODULE INTRODUCTION

Hypertext Markup Language (HTML) is the backbone of the World
Wide Web, serving as the standard language used to create and design
web pages. Understanding HTML is crucial for anyone looking to build
websites or delve into web development. It provides the structure of a
webpage by using elements and tags to define content such as headings,
paragraphs, links, images, and more. This module, titled "HTML
Fundamentals," aims to introduce the core concepts and syntax of
HTML, equipping learners with the foundational knowledge needed to
create well-structured and functional web pages. In this module,
students will explore the essential elements of HTML, starting with the
basic document structure and gradually progressing to more complex
components like forms, tables, and multimedia integration. Through a
series of hands-on exercises and practical examples, learners will gain
experience in coding and debugging HTML documents. By the end of
the module, participants will be proficient in using HTML to build static
web pages, understand best practices for web development, and be
prepared for more advanced topics in web design and development.

Unit 1 Introduction to HTML
Unit 2 HTML tags and attributed
Unit 3 HTML syntax and basic markup: headings, paragraphs,

lists, links
Unit 4 Advanced 5HTML and XHTML Element

Unit 1 Introduction to HTML

Contents

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 A Brief History of HTML
3.2 The Crucial Role of HTML in Web Development
3.3 HTML Elements and Tags
3.4 Essential HTML Tags
3.5 Importance of HTML
3.6 Best Practices in HTML Coding

4.0 Summary
5.0 Further Reading

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

68

1.0 Introduction

Hypertext Markup Language (HTML) is the standard markup language
used to create web pages. It’s a combination of Hypertext, which defines
the link between web pages, and Markup language, which is used to
define the text document within tags to structure web pages. This
language is used to annotate text so that machines can understand and
manipulate it accordingly. HTML is human-readable and uses tags to
define what manipulation has to be done on the text. This unit will help
you understand the workings of HTML and explain it with examples.

 2.0 Intended Learning Outcomes (ILOs)

Understanding Basic HTML Structure
• Explain the purpose of common HTML tags and attributes
• Identify and describe the usage of various HTML elements
• Develop a simple web page using basic HTML elements

3.0 Main Content

3.1 A Brief History of HTML

HTML is a markup language used by the browser to manipulate text,
images, and other content, in order to display it in the required format.
HTML was created by Tim Berners-Lee in 1991. The first-ever version
of HTML was HTML 1.0, but the first standard version was HTML 2.0,
published in 1995.

The first version of HTML was written by Tim Berners-Lee in 1993.
Since then, there have been many different versions of HTML. The most
widely used version throughout the 2000's was HTML 4.01, which
became an official standard in December 1999.

Another version, XHTML, was a rewrite of HTML as an XML
language. XML is a standard markup language that is used to create
other markup languages. Hundreds of XML languages are in use today,
including GML (Geography Markup Language), MathML, MusicML,
and RSS (Really Simple Syndication). Since each of these languages
was written in a common language (XML), their content can easily be
shared across applications. This makes XML potentially very powerful,
and it's no surprise that the W3C would create an XML version of

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

69

HTML (again, called XHTML). XHTML became an official standard in
2000, and was updated in 2002. XHTML is very similar to HTML, but
has stricter rules. Strict rules are necessary for all XML languages,
because without it, interoperability between applications would be
impossible. You'll learn more about the differences between HTML and
XHTML in Unit 2.

Most pages on the Web today were built using either HTML 4.01 or
XHTML 1.0. However, in recent years, the W3C (in collaboration with
another organization, the WHATWG), has been working on a brand new
version of HTML, HTML5. Currently (2011), HTML5 is still a draft
specification, and is not yet an official standard. However, it is already
widely supported by browsers and other web-enabled devices, and is the
way of the future. Therefore, HTML5 is the primary language taught in
this course.

Examples of types of content that can be included on web pages
The following table shows a list of many of the types of content that can
be added to web pages using different versions of HTML. In the early
days of the Web, HTML (version 1.2) was very simple, but over time
new versions were released that added more and more features. Still, if
web designers wanted to add content or features that HTML didn't
support, they would have to do so with non-standard proprietary
technologies such as Adobe Flash. These technologies would require
users to install browser plug-ins, and in some cases meant that certain
users would be unable to access the content (for example, iPhones and
iPads don't support Flash).

HTML5 has added support for many new features that will make it
possible to do more with HTML, without relying on non-standard
proprietary technologies.
Type of
content

HTML
1.2

HTML
4.01 HTML5 Purpose

Heading Yes Yes Yes

Organize page
content by adding
headings and
subheadings to the

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

70

top of each section
of the page

Paragraph Yes Yes Yes
Identify paragraphs
of text

Address Yes Yes Yes
Identify a block of
text that contains
contact information

Anchor Yes Yes Yes
Link to other web
content

List Yes Yes Yes
Organize items into
a list

Image Yes Yes Yes
Embed a photograph
or drawing into a
web page

Table No Yes Yes
Organize data into
rows and columns

Style No Yes Yes

Add CSS to control
how objects on a
web page are
presented

Script No Yes Yes

Add Javascript to
make pages respond
to user behaviors
(more interactive)

Audio No No Yes
Add audio to a web
page with a single
tag

Video No No Yes
Add video to a web
page with a single
tag

Canvas No No Yes

Add an invisible
drawing pad to a
web page, on which
you can add
drawings
(animations, games,
and other interactive
features) using
Javascript

3.2 The Crucial Role of HTML in Web Development

At its heart, HTML is a language made up of elements, that can be
applied to pieces of text to give them different meanings in a document

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

71

(Is it a paragraph? Is it a bulleted list? Is it part of a table?), structure a
document into logical sections (Does it have a header? Three columns of
content? A navigation menu?), and embed content such as images and
videos into a page. This module will introduce the first two of these and
introduce fundamental concepts and syntax you need to know to
understand HTML.

HTML plays an essential role in web development as it defines the
structure and content of web pages. It serves as the backbone upon
which websites are built. HTML accomplishes this by utilizing a system
of tags and elements, each serving a unique purpose. Tags are enclosed
within angle brackets, each comprising an opening and closing part.
They function as building blocks that define the structure of your web
page. Think of them as the bricks and mortar of web development.
Understanding their roles is essential for web development.

It is the most basic language, and simple to learn and modify. It is a
combination of both hypertext and markup language. It contains the
elements that can change/develop a web page’s look and the displayed
contents. Or we can say that HTML creates or defines the structure of
web pages. We can create websites using HTML which can be viewed
on internet-connected devices like laptops, android mobile phones, etc.
It was created by Tim Berners-Lee in 1991. The first version of HTML
is HTML 2.0 which was published in 1999, and the latest version is
HTML 5. We can save HTML files with an extension .html.

Markup Language is a language that is interpreted by the browser and it
defines the elements within a document using “tags”. It is human-
readable, which means that markup files use common words rather than
the complicated syntax of programming languages.
HTML Example
<!DOCTYPE html>
<html>
<head>
<title>First HTML Code</title>
</head>
<body>
<h2>Welcome To GFG</h2>
<p>Hello Geeks</p>
</body>
</html>

3.3 HTML Elements and Tags

HTML uses predefined tags and elements that instruct the browser on
how to display the content. HTML elements include an opening tag,

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

72

some content, and a closing tag. It’s important to remember to include
closing tags. If omitted, the browser applies the effect of the opening
tag until the end of the page.

This section will dive into the basic structure of an HTML page, which
includes essential building-block elements like doctype declaration,
HTML, head, title, and body elements.

HTML Page Structure
The basic structure of an HTML page is shown below. It contains the
essential building-block elements (i.e. doctype declaration, HTML,
head, title, and body elements) upon which all web pages are created.

<!DOCTYPE html> – This is the document type declaration (not
technically a tag). It declares a document as being an HTML
document. The doctype declaration is not case-sensitive.
<html> – This is called the HTML root element. All other elements are
contained within it.
<head> – The head tag contains the “behind the scenes” elements for a
webpage. Elements within the head aren’t visible on the front end of a
webpage. HTML elements used inside the <head> element include:

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

73

<style> – This HTML tag allows us to insert styling into our web
pages and make them appealing to look at with the help of CSS.
<title> – The title is what is displayed on the top of your browser when
you visit a website and contains the title of the webpage that you are
viewing.
<base> – It specifies the base URL for all relative URL’s in a
document.
<noscript> – Defines a section of HTML that is inserted when the
scripting has been turned off in the user’s browser.
<script> – This tag is used to add functionality to the website with the
help of JavaScript.
<meta> – This tag encloses the metadata of the website that must be
loaded every time the website is visited. For eg:- the metadata charset
allows you to use the standard UTF-8 encoding on your website. This
in turn allows the users to view your webpage in the language of their
choice. It is a self-closing tag.
<link> – The ‘link’ tag is used to tie together HTML, CSS, and
JavaScript. It is self-closing.
<body> – The body tag is used to enclose all the visible content of a
webpage. In other words, the body content is what the browser will
show on the front end.
An HTML document can be created using an HTML text editor. Save
the text file using the “.html” or “.htm” extension. Once saved as an
HTML document, the file can be opened as a webpage in the browser.
Note: Basic/built-in text editors are Notepad (Windows) and TextEdit
(MacOS). Other advanced text editors include Sublime Text, Visual
Studio Code, Froala, etc.
This example illustrates the basic structure of HTML code.
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport"
 content="width=device-width, initial-scale=1.0">
<!--The above meta characteristics make a website
 compatible with different devices. -->
<title>Demo Web Page</title>
</head>
<body>
<h1>IFT 2023 Class</h1>
<p>A computer science portal for geeks</p>
</body>
</html>
Doctype Declaration:
The doctype declaration (<!DOCTYPE html>) is placed at the very
beginning of an HTML document. It informs the browser about the

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

74

version of HTML being used, which is HTML5 in this case. This
declaration ensures that the document is rendered correctly.

HTML Tag:
The <html> tag serves as the root element of an HTML document. It
encompasses the entire content of the page and provides the base for
all other elements.

Head Section:
The <head> section comes after the opening <html> tag and before
the <body> tag. It contains meta-information about the document, such
as the page title, character encoding, CSS stylesheets, JavaScript files,
and other metadata.

The content within the <head> section is not directly visible on the
page but is crucial for search engines and browsers to understand and
process the document correctly.

Title Tag:
The title tag is placed within the <head> section. It defines the title of
the web page, which is displayed on the browser's title bar or in search
engine results. The text enclosed within the <title> tags is a concise
description of the page's content and should accurately represent its
purpose.

Body Section:
The <body> tag contains the visible content of the web page. It
includes text, images, links, and interactive elements like forms or
buttons. Everything between the opening <body> tag and the
closing </body> tag is considered the body content.

Here is a basic HTML template that illustrates the standard structure:
html

<!DOCTYPE html>
<html>
<head><title>Page Title</title>
</head>
<body>
<h1>Welcome to My Website</h1>
<p>This is the content of my web page.</p>
Visit Example
<!-- Additional elements and content go here →
</body>
</html>

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

75

In the example above, the <title> tag sets the page title, and within
the <body> section, we have a heading <h1>, a paragraph <p>, and a
link <a> to the website "www.testing.com". This template is a starting
point, and you can add more elements and content within
the <body> section to build your web page.

Remember, this is a basic representation of the HTML structure. As
you progress in web development, you will encounter more complex
elements and tags to enhance the functionality and design of your web
pages.

3.4 Essential HTML Tags

Heading Tags
Heading tags, from <h1> to <h6>, are used to define headings and
subheadings in a web page. They play a crucial role in organizing and
structuring content. The higher the number in the heading tag, the less
significant the heading is. Here is an example:

html
<h1>This is the Main Heading</h1>
<h2>This is a Subheading</h2>
Heading tags not only provide visual hierarchy but also contribute to
search engine optimization (SEO) by signalling the importance of
content to search engines
Paragraph and Break Tags
The <p> tag is used to define paragraphs of text. It is a block-level
element that creates a new paragraph. Here is an example:

html
<p>This is a paragraph of text.</p>
<p>Another paragraph of text.</p>
If you want to create a line break within a paragraph, you can use
the
 tag, which is an empty element. Here is an example:

html
<p>This is the first line.

 This is the second line.</p>
Anchor Tags
The <a> tag is used to create hyperlinks. It allows you to link to other
web pages, documents, or specific parts of a page. The href attribute
specifies the URL of the destination. Here is an example:

html
Visit Example

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

76

You can also use the target attribute to control how the link opens. For
example, target="_blank" opens the link in a new browser tab:

html
Visit
Example
Image Tags

The tag is used to embed images in a web page. The src
attribute specifies the image source (file URL or path). The alt attribute
provides alternative text that describes the image for accessibility
purposes. Here is an example:

html
<img src="image.jpg" alt="Description of the image" title="Image
Title">
You can also use the title attribute to provide additional information
about the image when the user hovers over it: html
<img src="image.jpg" alt="Image Description" title="Additional
Information">

List Tags
HTML provides two types of lists: unordered lists () and ordered
lists (). The tag is used to define individual list items within
these lists. Here is an example:

html

Item 1
Item 2

First
Second

Table Tags
Tables are used to present data in a structured format. The <table> tag
creates the table, while the <tr> tag defines table rows. Within each
row, we use the <td> tag to define table cells. The <th> tag is used for
table headers. Here is an example:

html
<table>
<tr>
<th>Header 1</th>

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

77

<th>Header 2</th>
</tr>
<tr>
<td>Data 1</td>
<td>Data 2</td>
</tr>
</table>

Div and Span Tags
The <div> tag is used for grouping elements together and applying
styles or JavaScript to them. The tag is used for inline styling
or targeting specific parts of the text. Here is an example:

html
<div><p>This is a group of elements.</p>
This text is styled
differently.</div>

Form Tags
The <form> tag is used to create a web form. The <input> tag
represents various input types such as text fields, checkboxes, radio
buttons, etc. The <textarea> tag is used for multi-line text input, and
the <button> tag represents a clickable button. Here is an example.

html
<form action="/submit-form" method="POST">
<label for="name">Name:</label>
<input type="text" id="name" name="name" required>

<label for="email">Email:</label>
<input type="email" id="email" name="email" required>

<textarea id="message" name="message" rows="4" cols="50"
required></textarea>

<button type="submit">Submit</button>
</form>

Important HTML Tags
<!DOCTYPE html>: Defines the type of document. Here it defines that
the document type is HTML.
<html></html>: It is the root element and all the other tags are
contained in it. It determines the start and the end of the HTML
document.
<head></head>: It contains metadata of the HTML document & is
actually not displayed on the webpage. The heading starts with <head>
and end with </head>.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

78

<title></title>: It is used to create a title of the document and the title
appears in the title bar at the top. At least one title appears in every
document. The title portion of the document starts with <title> and
ends with </title>, and in between, enter the text that you want as the
title.
<body></body>: It contains the contents of the document to be
displayed on the web page. The content may be an image, some text,
some links, etc. This part represents the body of the web document,
which often includes headings, text, and paragraphs.
<p>: It is used for defining a paragraph.

: It is used for a single-line break.
: It is used for defining an image with a given source.
<sup>: It is used for defining superscripted data.
: It is used for defining bold text.
<sub>: It is used for defining subscripted data, etc.
Example 1: Save the following by MyGeeksHtml.html.
<!DOCTYPE html>
<html>
<head>
 <title> IFT 203 class webpage</title>
</head>
<body>
 My First WebPage
<p> I am using paragraph tag </p>
 Now i am out of paragraph tag
 No line break

 I am using line break tag
 Now using Bold Tag
 <img src=
"https://media.IFT 203 Class.org/wp-content/cdn-
uploads/gfg_200x200-min.png"
 width="200" height="100">
</body>
</html>
Example 2: In this example, we will use all the heading tags from <h1>
to <h6>
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0">
 <title>HTML</title>
</head>
<body>

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

79

 <h1>Welcome IFT 203</h1>
 <h2> Welcome IFT 203</h2>
 <h3> Welcome IFT 203</h3>
 <h4> Welcome IFT 203</h4>
 <h5> Welcome IFT 203</h5>
 <h6> Welcome IFT 203</h6>

</body>
</html>

3.5 Importance of HTML

HTML is essential to the internet as it provides the structure,
formatting, and functionality required to create web pages.
Understanding HTML is the first step in web development, enabling
individuals to build functional and visually appealing websites.

Structure and Organization
HTML provides a logical structure for web content. It allows
developers to define headings, paragraphs, lists, and other elements,
which not only enhance readability but also aid in search engine
optimization (SEO).

Cross-Platform Compatibility
HTML ensures cross-platform compatibility, making web pages
accessible across different devices and operating systems. It allows
content to adapt to various screen sizes and resolutions, enabling
responsive web design and ensuring a consistent user experience.

Hyperlinks and Navigation
HTML enables hyperlink creation for seamless navigation between
web pages. Hyperlinks are vital for the interconnected nature of the
internet allowing easy movement within and across websites.
HTML's <a> tag makes it possible to link to external resources,
internal pages, or specific page sections.

Media Integration
HTML supports the inclusion of multimedia elements, such as images,
audio, and video, within web pages. By using
HTML's , <audio>, and <video> tags, developers can embed
visual and auditory content directly into their websites, enhancing
engagement and user experience.

Forms and User Interaction
HTML forms enable user interaction and data collection on websites.
Forms allow users to input data, submit information, and interact with
web applications. HTML provides elements like text fields,

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

80

checkboxes, radio buttons, dropdown menus, and submit buttons,
which are essential for creating interactive web pages.

Foundation for Web Technologies
HTML is the foundation for web technologies like CSS (Cascading
Style Sheets) and JavaScript. CSS styles HTML elements, improving
the visual presentation and layout of web pages, while JavaScript adds
interactivity and dynamic functionality to HTML-based websites.

3.6 Best Practices in HTML Coding

Following coding standards is essential for clean, maintainable, and
efficient HTML code. Consistent and well-structured code improves
readability, makes collaboration easier, and minimizes errors. Some
best practices to consider include:
Indentation and Formatting: Use consistent indentation and proper
formatting to enhance code readability. This helps you and other
developers understand the structure of the HTML document more
easily.

Naming Conventions: Use descriptive and meaningful names for
HTML elements, classes, and IDs. This improves code clarity and
makes it easier to understand the purpose of each element.

Avoid Inline Styles: Inline styles should be used sparingly. Instead,
consider using external or internal CSS to separate styling from HTML
structure, promoting better organization and maintainability.

Semantic HTML: Utilize semantic HTML elements (e.g., <header>,
<nav>, <section>, <article>, <footer>) to convey the structure and
meaning of the content. Semantic HTML improves accessibility,
search engine optimization, and overall code quality.

Consistent Tag Naming: Stick to lowercase tag names to ensure
consistency and compatibility across different browsers and versions.

Self-Assessment Exercise(s)

(1) What does HTML stand for?

A) Hyperlinks and Text Markup Language
B) Home Tool Markup Language
C) Hyper Text Markup Language
D) Hyper Tool Multi-Language
Answer: C) Hyper Text Markup Language

(2) Which HTML tag is used to create a hyperlink?

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

81

A) <a>
B) <link>
C) <href>
D) <hyperlink>
Answer: A) <a>

(3) Which of the following is a block-level element in HTML?
A)
B) <div>
C) <a>
D)
Answer: B) <div>

(4) Which attribute is used to specify an alternate text for an image,

if the image cannot be displayed?
A) alt
B) title
C) src
D) href
Answer: A) alt

What is the purpose of the <head> tag in an HTML document?
A) To contain the main content of the page
B) To link external files
C) To contain meta-information about the document
D) To display images and links
Answer: To contain meta-information about the document

Conclusion

Understanding the fundamentals of HTML is essential for anyone
looking to develop or engage with web technologies. HTML forms the
backbone of web content, providing the structure and organization
necessary to present text, images, links, multimedia, and interactive
forms on the web. With its elements and tags, HTML allows
developers to create structured and semantically meaningful web pages
that are easily interpreted by browsers and accessible to users across
various devices and platforms. The introduction of HTML5 has further
enhanced the language's capabilities, adding new elements and APIs to
support modern web applications. Mastering HTML is a foundational
step in web development, enabling the creation of rich, user-friendly,
and dynamic web experiences.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

82

 4.0 Summary

In today's digital age, having a basic understanding is essential for
anyone aspiring to create a website. HTML forms the foundation of
every web page, allowing developers to structure content and create
interactive websites. In this unit, we introduce fundamental HTML
codes to help you start building your website. We cover document
structure, headings, paragraphs, links, images, lists, tables, and forms.
Whether you are a beginner or want to refresh your HTML skills, this
unit will be a valuable guide.

 5.0 References/Further Reading

Robbins, J. N. (2012). Learning web design: A beginner's guide to

HTML, CSS, JavaScript, and web graphics. " O'Reilly Media,
Inc.".

Mercer, D. (2001). Schaum's Outline of HTML. McGraw-Hill, Inc..

Cook, C., & Schultz, D. (2007). Beginning HTML with CSS and

XHTML: Modern Guide and Reference. Apress.

Macaulay, M. (2017). Introduction to web interaction design: With

Html and Css. Chapman and Hall/CRC.
McGrath, M. (2020). HTML, CSS & JavaScript in easy steps. In Easy

Steps Limited.

Tittel, E., & Noble, J. (2010). HTML, XHTML and CSS for dummies.

John Wiley & Sons.

Powell, T. (2010). HTML & CSS: the complete reference. McGraw-

Hill, Inc.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

83

Unit 2 HTML Tags and Attribute

Contents

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 The HTML Tags
3.2 The HTML attributes

4.0 Summary
5.0 References/Further Reading

 1.0 Introduction

HTML tags are the basic building blocks of HTML, used to create and
structure sections, paragraphs, and links on a web page. An HTML tag
consists of an element name enclosed in angle brackets, such as <p>
for a paragraph or <a> for a hyperlink. Tags often come in pairs, with
an opening tag (<p>) and a closing tag (</p>), where the closing tag
includes a forward slash. Some tags, like for images and

for line breaks, are self-closing and do not require a closing tag. HTML
tags help browsers understand how to display the content, whether it's
text, images, or other media, ensuring that the web page appears as
intended by the developer.

HTML attributes provide additional information about an element and
are included within the opening tag. Attributes typically come in name-
value pairs, separated by an equals sign, and are enclosed in quotation
marks, such as class="classname" or src="image.jpg". Common
attributes include id for unique identification, class for assigning CSS
styles, href for specifying the destination of a link, and alt for
providing alternative text for images. Attributes enhance the
functionality and accessibility of HTML elements, allowing for more
precise control over the web page's behavior and presentation. For
example, using the style attribute can directly apply CSS styles to an
element, while the data-* attributes can store custom data private to the
page or application.

 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, I will be able to:
• discuss the meaning of HTML Tags

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

84

• use simple HTML Tags codes
• use simple HTML tags in practical designs
• explain HTML Attributes

3.0 Main Content

3.1 The HTML Tags

HTML (HyperText Markup Language) is the standard language used
to create and design webpages. It uses a series of elements, represented
by tags, to structure and format content on the web. Tags are enclosed
in angle brackets, for example, <tagname>. Each tag usually comes in
a pair: an opening tag <tagname> and a closing tag </tagname>,
although some tags are self-closing.

The basic structure of an HTML document begins with the
<!DOCTYPE html> declaration, followed by the <html> tag, which
wraps all the content on the page. Within the <html> tag, there are two
main sections: <head> and <body>. The <head> section contains meta-
information about the document, such as the title (specified using the
<title> tag) and links to stylesheets or scripts. For instance, <head>
might include <title>My Webpage</title>. The <body> section
contains the actual content that is displayed on the webpage, such as
text, images, and links.

Text content in HTML is structured using various tags. Paragraphs are
created with the <p> tag, like <p>This is a paragraph.</p>. Headings
are defined with tags <h1> through <h6>, with <h1> being the highest
level of heading and <h6> the lowest, for example, <h1>Main
Heading</h1>. To emphasize text, the and tags are
used, which typically render text in bold and italic, respectively:
Important and Italicized.

Links and images are also integral parts of HTML. Hyperlinks are
created using the <a> tag, where the href attribute specifies the URL:
Visit Example. Images are
embedded with the tag, which is self-closing and requires the
src attribute to specify the image source, and optionally, the alt
attribute for alternative text: <img src="image.jpg" alt="Description of
image">. Lists are another common element, which can be ordered
 or unordered , with list items defined by the tag:
First itemSecond item.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

85

These examples showcase the fundamental building blocks of HTML.
By combining these tags and understanding their attributes and usage,
developers can create well-structured and visually appealing webpages.
As web technology evolves, HTML remains a critical skill, enabling
the creation and maintenance of dynamic, interactive, and accessible
web content.

HTML consists of standardized “tags” that are used to define the
structure of information on Web pages. The decision about the
structure of the text is made by the browser based on the tags, which
are marks that are embedded into the text. A tag is enclosed in two
signs (< and >) and usually comes in pairs. The beginning tag starts
with the name of the tag, and the ending tag starts with a slash
followed by the name of the tag. The use of tags enables web pages to
have many features including bold text, italic text, heading, paragraph
breaks, and numbered or bulleted list. The table shows a list of
common HTML tags

Opening Tag Closing Tag Meaning
<A> Defines an address (hyperlink)
<BODY> </BODY> Defines the body of the document

 Line break
<HEAD> </HEAD> Defines the head of the document
<HTML> </HTML> Defines an HTML document
 Define an Image
 An item in a list
 Ordered list
 <//UL> Unordered list
<TITLE> </TITLE> Defines the title of the document
 Tags are generally used to specify “mark-up” regions of HTML
documents for the web browser to interpret. Tags are composed of the
name of the element, surrounded by angle brackets. An end tag also
has a slash after the opening angle bracket, to distinguish it from the
start tag. For example, p, which represents a paragraph by p element,
would be written as:
<p> This represent a paragraph</p>
 Not all elements require the end tag. An example of an element that
does not require an end tag is the
 element which forces a line
break on the display of interpreted HTML codes on a browser.
 HTML attributes are modifiers of HTML elements. They generally
appear as name-value pairs, separated by "=", and are written within
the start tag of an element, after the element's name:
<''tag'' ''attribute''="''value''">(content to be modified by the tag)</tag>

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

86

 Where the tag names the HTML element, an attribute is the name of
the attribute, set to the provided value. An attribute customizes or
modifies HTML elements.
3.2 The structure of HTML Page
 The basic structure for all HTML documents is simple and should
include the following minimum elements or tags:
<html>-This is the starting tag of the html which must be closed at the
end of the page
<head>-The author of the page can insert his/her details here</head>
<title>-The is used for the title of the page which is published on the
title page of your web browser</title>
<body>-This is a container of the main body of the page</body>
</html>
 The <HTML> Element
 The HTML element is considered the root and container element for
the whole HTML document. That is, its sole purpose is to encapsulate
all the HTML code and describe the HTML document to the web
browser. Each HTML document should have one <html> and each
document should end with a closing </html> tag.
 Example 1: HTML Code:
<html>
…..the contents should be here in the order of the head, title and body
</html>
The <HEAD> Element
 The HEAD tag marks the beginning of the document head element; its
contains the title of the pages and other parameters that the browser
will use. Thus, each <head> element should contain a <title> element
indicating the title of the document, and may also contain any
combination of the following elements, in any order:
 The <style> tag.
This is used for declaring or including Cascading Style Sheets(CSS)
codes inside your HTML document.
 The <script> tag
This tag is used to declare or include JAVAScript or VBScript inside
the document.
 The <meta> tag
This is used to include information about the document such as
keywords and a description, which are particularly helpful for search
applications.
The <base> tag
This is used to create a "base" universal resource location (url) for all
links on the page.
 The <object> tag
This is designed to include multimedia such as images, Flash
animations, MP3 files, QuickTime movies JavaScript objects, and
other components of a page. The <param> tag is used along with this

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

87

tag to define various parameters. Note the <embed> tag can also be
used to include multimedia files as will be discuss later in this module.
 The <link> tag
This is used to link to an external file, such as a style sheet or
JavaScript file.
 Example 2: Codes for HEAD element
<head>
<meta name="Keywords" content="NOUN, Web Pages" /><meta
name="description" content="HTML Basic Tags" />
 <base href="http://www.noun.edu.nghttp://www.nou.edu.ng/ "
/>
<link rel="stylesheet" type="text/css" href="noun.css" /><script
type="text/ javascript"> _uacct = "UA -232293"; urchinTracker();
< /script>
</head>
 The <title> Element
 The <title> tag is usually placed within the <head> element to title
your page. Whatever is written between the opening and closing
<title></title> tags will be displayed in the title bar of the WEB
browser. Search engines that use its content to help index pages use the
title information. Therefore, it is excellent practice to use a title that
really describes the content of your site.
 Example 3: Code for Title element
< html>
<head>
<title>National Open University of Nigeria </title>
</head>
</html>
 The <Body> Element
The <body> element appears after the <head> element. The purpose of
the <body> element is to contain the text and HTML element that will
display in the browser window. A <body> element may contain
anything from a couple of paragraphs, links, images under a heading to
more complicated layouts containing forms and tables. We will be
looking at each of these elements in detail later in this unit. For now, it
is only important to understand that the body element will encapsulate
all of your webpage viewable content.
 Example 4: Codes for Body Element
<html>
< head>
<title>National Open University Website!</title></head>
< body>
Welcome to the official Website of the National Open University of
Nigeria </body>
</html>

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

88

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

89

3.2 The HTML attributes

HTML attributes provide additional information about HTML
elements. They are always specified in the start tag of an element and
usually come in name/value pairs like `name="value"`. Attributes can
define properties such as the element's id, class, style, or behavior.
These properties influence how elements are presented or interact on a
webpage. For example, in `Visit
Example`, the `href` attribute specifies the URL that the hyperlink
points to.

The `class` attribute is commonly used to apply CSS styles to
elements. It allows you to group multiple elements together and apply
the same styles to them. For instance, `<div class="container">Content
here</div>` uses the `class` attribute to assign the class `container` to a
`div` element. This class can then be targeted in a CSS file to apply
specific styles, such as `background-color: lightblue;` to all elements
with the class `container`.

The `id` attribute is used to uniquely identify an element within a
document. It is especially useful for targeting elements with CSS and
JavaScript. For example, `<p id="intro">This is an introduction
paragraph.</p>` assigns the id `intro` to a paragraph. In CSS, you can
style this specific paragraph with `#intro { font-weight: bold; }`. In
JavaScript, you can manipulate it using
`document.getElementById("intro").style.color = "red";`.

Another important attribute is the `alt` attribute, used with the `img`
tag to provide alternative text for images. This text is displayed if the
image cannot be loaded and is also used by screen readers to describe
images for visually impaired users. For example, `<img
src="photo.jpg" alt="A beautiful scenery of mountains and lakes">`
ensures that users understand the context of the image even if it fails to
load. This not only improves accessibility but also helps with search
engine optimization by providing descriptive text for images.

HTML attributes are essential components of HTML elements,
providing additional information that defines their properties, behavior,
and overall presentation. These attributes are always specified in the
opening tag of an HTML element and are written in name/value pairs,
like `name="value"`. Understanding and effectively using HTML
attributes is crucial for web development, as they help create rich,
interactive, and accessible web pages. This detailed explanation will
cover various types of HTML attributes, their uses, and examples to
illustrate their application.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

90

Basic HTML Attributes
`id` Attribute
The `id` attribute is used to uniquely identify an HTML element within
a document. This uniqueness is critical because it allows developers to
target specific elements with CSS or JavaScript. For instance, in CSS,
you can style an element with a particular `id`, and in JavaScript, you
can manipulate it directly.
Example:
```html 
<p id="intro">This is an introduction paragraph.</p> 
``` 
In CSS, you can target this paragraph:
```css 
#intro { 
    font-weight: bold; 
    color: blue; 
} 
``` 
In JavaScript, you can change its properties:
```javascript 
document.getElementById("intro").style.color = "red"; 
``` 
`class` Attribute
The `class` attribute is used to apply styles and behaviors to multiple
elements. Unlike the `id` attribute, a class can be reused on multiple
elements, making it very useful for styling groups of elements.
Example:
```html 
<div class="container">This is a container.</div> 
<div class="container">This is another container.</div> 
``` 
In CSS, you can style all elements with the class `container`:
```css 
.container { 
    padding: 20px; 
    background-color: lightgrey; 
} 
``` 
`style` Attribute
The `style` attribute allows you to apply inline CSS to an element. This
can be useful for quick styling, but it's generally recommended to use
external or internal CSS for maintainability.
Example:
```html 
<p style="color: green; font-size: 16px;">This is a styled 
paragraph.</p> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

91 

 

``` 
`title` Attribute
The `title` attribute provides additional information about an element,
often displayed as a tooltip when the mouse hovers over it.
Example:
```html 
<p title="This is a tooltip">Hover over this text to see the tooltip.</p> 
``` 
Form Attributes
Forms are essential for collecting user input on web pages. Several
attributes are specifically designed to enhance form functionality.
`action` and `method` Attributes
The `action` attribute specifies where to send the form data when the
form is submitted, and the `method` attribute defines how to send the
data (usually `GET` or `POST`).
Example:
```html 
<form action="/submit-form" method="post"> 
<input type="text" name="username"> 
<input type="submit" value="Submit"> 
</form> 
``` 
`placeholder` Attribute
The `placeholder` attribute provides a hint to the user of what can be
entered in the input field.
Example:
```html 
<input type="text" placeholder="Enter your name"> 
``` 
`required` Attribute
The `required` attribute specifies that an input field must be filled out
before submitting the form.
Example:
```html 
<input type="email" required> 
``` 
Global Attributes
Global attributes can be applied to any HTML element, enhancing its
functionality and accessibility.
`data-*` Attributes
Custom data attributes, or `data-*` attributes, allow you to store extra
information on standard HTML elements. This information can be used
in JavaScript.
Example:
```html 
<div data-user-id="12345" data-role="admin">User Info</div> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

92 

 

``` 
In JavaScript, you can access these attributes:
```javascript 
let userId = document.querySelector('[data-user-
id]').getAttribute('data-user-id'); 
``` 
`hidden` Attribute
The `hidden` attribute is used to hide an element from the user. It can
be toggled with JavaScript to show or hide elements dynamically.
Example:
```html 
<p hidden>This paragraph is hidden.</p> 
`` 
### Image Attributes 
Images are integral to web content, and specific attributes help manage 
their display and accessibility. 
#### `src` Attribute 
The `src` attribute specifies the path to the image file. 
Example: 
```html 

``` 
#### `alt` Attribute 
The `alt` attribute provides alternative text for an image, which is 
crucial for accessibility and SEO. This text is displayed if the image 
cannot be loaded and is read by screen readers. 
Example: 
```html 
<img src="photo.jpg" alt="A beautiful scenery of mountains and
lakes">
``
Link Attributes
Links connect web pages and resources, and specific attributes enhance
their functionality.
`href` Attribute
The `href` attribute specifies the URL of the page the link goes to.
Example:
```html 
<a href="https://www.example.com">Visit Example</a> 
``` 
`target` Attribute
The `target` attribute specifies where to open the linked document. For
example, `_blank` opens the link in a new tab.
Example:
```html 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

93 

 

<a href="https://www.example.com" target="_blank">Visit Example 
in new tab</a> 
``` 
Table Attributes
Tables organize data into rows and columns, and specific attributes
manage their structure and presentation.
`colspan` and `rowspan` Attributes
The `colspan` attribute allows a cell to span multiple columns, while
`rowspan` allows a cell to span multiple rows.
Example:
```html 
<table> 
<tr> 
<td colspan="2">This cell spans two columns</td> 
</tr> 
<tr> 
<td rowspan="2">This cell spans two rows</td> 
<td>Row 1, Column 2</td> 
</tr> 
<tr> 
<td>Row 2, Column 2</td> 
</tr> 
</table> 
``` 
Event Attributes
Event attributes allow you to specify JavaScript code to execute in
response to events.
`onclick` Attribute
The `onclick` attribute executes JavaScript when an element is clicked.
Example:
```html 
<button onclick="alert('Button clicked!')">Click me</button> 
``` 
Accessibility Attributes (ARIA)
ARIA (Accessible Rich Internet Applications) attributes help improve
accessibility for users with disabilities.
`aria-label` Attribute
The `aria-label` attribute provides an accessible name for an element
that can be read by screen readers.
Example:
```html 
<button aria-label="Close">X</button> 
``` 
`role` Attribute
The `role` attribute defines the role of an element in a web application,
making it more accessible.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

94

Example:
```html 
<div role="navigation">Navigation Menu</div> 
``` 
Custom Attributes
HTML5 allows for the use of custom data attributes to store additional
information about elements.
`data-*` Attributes
Custom data attributes are prefixed with `data-` and allow developers
to embed custom data attributes in elements. These attributes are useful
for storing information that can be manipulated via JavaScript.

Example:
```html 
<div data-product-id="12345" data-category="books">Product 
Information</div> 
``` 
Examples of Complex Use
Combining multiple attributes in a single element can create powerful
and interactive web elements.
Example:
```html 
<a href="https://www.example.com" target="_blank" 
id="exampleLink" class="link-class" title="Example Site" data-
info="additional data" onclick="trackClick(this)">Visit Example</a> 
``` 
In this example, the anchor tag uses several attributes:
- `href` to define the URL
- `target` to open the link in a new tab
- `id` to uniquely identify the link
- `class` to apply CSS styles
- `title` to provide a tooltip
- `data-info` to store custom data
- `onclick` to execute JavaScript when the link is clicked
Tags vs Elements vs Attributes difference

HTML Tags HTML Elements HTML Attributes

HTML tags are
used to hold the
HTML element.

HTML element
holds the content.

HTML attributes are
used to describe the
characteristics of an
HTML element in detail.

HTML tag starts
with < and ends

Whatever written
within a HTML tag

HTML attributes are
found only in the starting

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

95

HTML Tags HTML Elements HTML Attributes

with > are HTML
elements.

tag.

HTML tags are
almost like
keywords where
every single tag
has unique
meaning.

HTML elements
specifies the
general content.

HTML attributes specify
various additional
properties to the existing
HTML element.

Tags define the
type of HTML
element (e.g.,
heading,
paragraph).

Elements represent
the complete,
functional unit on a
webpage.

Attributes provide extra
information or settings
for elements.

Self-Assessment Exercise(s)

1) Which HTML tag is used to define a hyperlink?
a) <link>
b) <a>
c) <h>
d) <p>
Answers: b) <a>

(2) Which attribute is used to specify the URL of the image to be

displayed in an tag?
a) src
b) href
c) alt
d) title
Answers: a) src

(3) Which tag is used to define the structure of an HTML

document, including the title and metadata?
a) <header>
b) <body>
c) <head>
d) <title>
Answers: c) <head>

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

96

(4) Which attribute is used to specify an alternate text for an image
in case the image cannot be displayed?

a) alt
b) src
c) title
d) href
Answers: a) alt

(5) Which tag is used to create a line break in HTML?
a)

b) <hr>
c) <p>
d) <nl>
Answers: a)

Conclusion

Understanding HTML tags and attributes is fundamental to web
development, as they form the backbone of any webpage. HTML tags,
such as <div>, <p>, and <a>, define the structure and content of a
webpage, while attributes like class, id, and href provide additional
information and functionality to these tags. By learning how to use
these elements effectively, developers can create well-structured,
accessible, and visually appealing websites. Mastery of HTML tags
and attributes also paves the way for integrating more advanced web
technologies such as CSS and JavaScript, enhancing the user
experience and interactivity. A solid grasp of HTML tags and
attributes is crucial for anyone looking to build or manage web content.
These elements not only dictate how information is displayed but also
influence how users interact with a website. As the foundation of web
development, HTML ensures that content is properly formatted and
accessible across different devices and browsers. Continual practice
and staying updated with the latest HTML standards will help
developers maintain the relevancy and efficiency of their web projects,
ultimately contributing to the dynamic and ever-evolving nature of the
internet.

 4.0 Summary

The HTML tags and attributes unit covers the fundamental building
blocks of web development, focusing on the essential elements that
structure web content. HTML uses tags to create elements such as
headings, paragraphs, links, images, and lists. Each tag is enclosed in
angle brackets, with opening and closing tags defining the start and end

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

97

of an element, respectively. For example, <p> is used for paragraphs,
and <a> is used for hyperlinks. The unit also explains the hierarchical
nature of HTML, where elements can be nested within other elements
to create a structured and organized web page layout.

In addition to tags, HTML attributes are crucial for providing
additional information about elements. Attributes are included within
the opening tag and typically come in name-value pairs, such as
id="uniqueID" or class="classname". These attributes can control the
behavior, appearance, and identity of HTML elements. For instance,
the href attribute in an <a> tag specifies the URL of the link, while the
src attribute in an tag defines the image source. The unit
emphasizes the importance of properly using tags and attributes to
create semantically meaningful and accessible web pages, ensuring that
content is both user-friendly and optimized for search engines.

 5.0 References/Further Reading

Robbins, J. N. (2012). Learning web design: A beginner's guide to

HTML, CSS, JavaScript, and web graphics. " O'Reilly Media,
Inc.".

Mercer, D. (2001). Schaum's Outline of HTML. McGraw-Hill, Inc..

Cook, C., & Schultz, D. (2007). Beginning HTML with CSS and

XHTML: Modern Guide and Reference. Apress.

Macaulay, M. (2017). Introduction to web interaction design: With

Html and Css. Chapman and Hall/CRC.

McGrath, M. (2020). HTML, CSS & JavaScript in easy steps. In Easy

Steps Limited.

Powell, T. (2010). HTML & CSS: the complete reference. McGraw-

Hill, Inc.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

98

Unit 3 HTML syntax and basic markup: headings,
paragraphs, lists, links

Contents

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 HTML Syntax
3.2 Basic HTML Document Structure
3.3 Lists
3.4 Links
3.5 Combining Elements

4.0 Summary
5.0 References/Further Readings

1.0 Introduction

HTML is the standard language used to create web pages. It consists of
a series of elements represented by tags, which are enclosed in angle
brackets. These tags generally come in pairs: an opening tag (e.g., <p>)
and a closing tag (e.g., </p>). The content between these tags is what
gets displayed on the web page. HTML documents start with a
<!DOCTYPE html> declaration to define the document type and
version, followed by an <html> element that encapsulates the entire
content. Inside the <html> tag, there are two main sections: the
<head>, which contains meta-information such as the title and links to
stylesheets, and the <body>, which contains the actual content of the
web page.

Basic HTML markup includes several fundamental elements. Headings
are created using the <h1> to <h6> tags, with <h1> being the highest
level and <h6> the lowest. Paragraphs are defined with the <p> tag.
Lists can be either ordered (numbered) or unordered (bulleted).
Ordered lists use the tag, and each list item is enclosed in an
tag. Unordered lists use the tag, also with for each item.
Links are created using the <a> tag, which requires an href attribute to
specify the URL. For example, Example creates a hyperlink to "
https://noun.edu.ng " with the text "Example" as the clickable part.
These basic elements provide the structure needed to build and
organize content on web pages.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

99

 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

• discuss the meaning of HTML Syntax
• explain HTML markup
• use simple HTML Markup Syntax
• use simple HTML Markup in practical designs

 3.0 Main Content

3.1 HTML Syntax

HTML is the standard language used to create web pages. It structures
the content on the web and is composed of elements represented by
tags. Understanding HTML syntax and basic markup is essential for
building web pages. This guide will cover the syntax and basic markup
for headings, paragraphs, lists, and links with examples.

HTML documents are text files that contain HTML elements. An
HTML element is defined by a start tag, content, and an end tag. The
basic structure of an HTML document includes a `<!DOCTYPE
html>` declaration, a `<html>` element, a `<head>` element, and a
`<body>` element.

HTML is a standard markup language for web page creation. It allows
the creation and structure of sections, paragraphs, and links using
HTML elements (the building blocks of a web page) such as tags and
attributes.

HTML has a lot of use cases, namely:
Web development. Developers use HTML code to design how a
browser displays web page elements, such as text, hyperlinks, and
media files.

Internet navigation. Users can easily navigate and insert links between
related pages and websites as HTML is heavily used to embed
hyperlinks.

Web documentation. HTML makes it possible to organize and format
documents, similarly to Microsoft Word.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

100

It’s also worth noting that HTML is not considered a programming
language as it can’t create dynamic functionality, although it is now
considered an official web standard. The World Wide Web Consortium
(W3C) maintains and develops HTML specifications, along with
providing regular updates.

The average website includes several different HTML pages. For
instance, a home page, an about page, and a contact page would all
have separate HTML files. HTML documents are files that end with
a .html or .htm extension. A web browser reads the HTML file and
renders its content so that internet users can view it.

All HTML pages have a series of HTML elements, consisting of a set
of tags and attributes. HTML elements are the building blocks of a web
page. A tag tells the web browser where an element begins and ends,
whereas an attribute describes the characteristics of an element.

The three main parts of an element are:
Opening tag – used to state where an element starts to take effect. The
tag is wrapped with opening and closing angle brackets. For example,
use the start tag
<p>
<p> to create a paragraph.
Content – this is the output that other users see.
Closing tag – the same as the opening tag, but with a forward slash
before the element name. For example,
</p>
</p> to end a paragraph.
The combination of these three parts will create an HTML element:
<p>This is how you add a paragraph in HTML.</p>
<p>This is how you add a paragraph in HTML.</p>
<p>This is how you add a paragraph in HTML.</p>
Another critical part of an HTML element is its attribute, which has
two sections – a name and an attribute value. The name identifies the
additional information that a user wants to add, while the attribute
value gives further specifications.
For example, a style element adding the color purple and the font-
family Verdana will look like this:
<p style="color:purple;font-family:Verdana">This is how you add a
paragraph in HTML.</p>
<p style="color:purple;font-family:Verdana">This is how you add a
paragraph in HTML.</p>
<p style="color:purple;font-family:verdana">This is how you add a
paragraph in HTML.</p>

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

101

Another attribute, the HTML class, is most important for development
and programming. The class attribute adds style information that can
work on different elements with the same class value.
For example, we will use the same style for a heading
<h1>
<h1> and a paragraph
<p>
<p>. The style includes background color, text color, border, margin,
and padding, under the class .important. To achieve the same style
between
<h1>
<h1> and
<p>
<p>, add
class="important"
class="important" after each start tag:
Syntax Highlighter
<html>
<head>
<style>
.important {
background-color: blue;
color: white;
border: 2px solid black;
margin: 2px;
padding: 2px;
}
</style>
</head>
<body>
<h1 class="important">This is a heading</h1>
<p class="important">This is a paragraph.</p>
</body>
</html>
<html><head><style> .important { background-color: blue; color:
white; border: 2px solid black; margin: 2px; padding: 2px; }
</style></head><body><h1 class="important">This is a
heading</h1><p class="important">This is a
paragraph.</p></body></html>
<html>
<head>
<style>
.important {
 background-color: blue;
 color: white;
 border: 2px solid black;

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

102

 margin: 2px;
 padding: 2px;
}
</style>
</head>
<body>

<h1 class="important">This is a heading</h1>
<p class="important">This is a paragraph.</p>

</body>
</html>
Most elements have an opening and a closing tag, but some elements
do not need closing tags to work, such as empty elements. These
elements do not use an end tag because they do not have content:

This image tag has two attributes – an
src
src attribute, the image path, and an
alt
alt attribute, the descriptive text. However, it does not have content nor
an end tag.
Lastly, every HTML document must start with a <!DOCTYPE>
declaration to inform the web browser about the document type. With
HTML5, the doctype HTML public declaration will be:
<!DOCTYPE html>
<!DOCTYPE html>

3.2 Basic HTML Document Structure

```html 
<!DOCTYPE html> 
<html> 
<head> 
<title>My First HTML Page</title> 
</head> 
<body> 
<!-- Content goes here --> 
</body> 
</html> 
``` 
`<!DOCTYPE html>`: This declaration defines the document type and
version of HTML. In this case, it is HTML5.
- `<html>`: The root element of an HTML page.

IFT 203 INTRODUCTION TO WEB TECHNOLOGIES

103

- `<head>`: Contains meta-information about the HTML document,
such as the title and links to stylesheets.
- `<title>`: Sets the title of the document, which appears in the
browser's title bar or tab.
- `<body>`: Contains the content of the HTML document, such as text,
images, links, and other elements.

Headings
Headings are used to define the structure and hierarchy of content.
HTML provides six levels of headings, from `<h1>` to `<h6>`, with
`<h1>` being the highest level and `<h6>` the lowest.
Examples of Headings
```html 
<!DOCTYPE html> 
<html> 
<head> 
<title>Headings Example</title> 
</head> 
<body> 
<h1>Main Heading</h1> 
<h2>Subheading</h2> 
<h3>Sub-subheading</h3> 
<h4>Level 4 Heading</h4> 
<h5>Level 5 Heading</h5> 
<h6>Level 6 Heading</h6> 
</body> 
</html> 
``` 
`<h1>`: Used for the main title or the most important heading.
- `<h2>` to `<h6>`: Used for subheadings, with each subsequent
number indicating a lower level of importance.

Paragraphs
Paragraphs are used to structure text content into blocks of text. The
`<p>` tag is used to define a paragraph in HTML.
Example of a Paragraph
```html 
<!DOCTYPE html> 
<html> 
<head> 
<title>Paragraph Example</title> 
</head> 
<body> 
<p>This is a paragraph of text. Paragraphs are used to group sentences 
together into blocks of content.</p> 
</body> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

104 

 

</html> 
``` 
- `<p>`: Defines a paragraph of text.

3.3 Lists

Lists are used to group related items. HTML provides two types of
lists: ordered lists and unordered lists.

Ordered Lists
Ordered lists are used when the order of items matters. The `` tag
defines an ordered list, and each item in the list is defined by an ``
tag.
Example of an Ordered List
```html 
<!DOCTYPE html> 
<html> 
<head> 
<title>Ordered List Example</title> 
</head> 
<body> 
<ol> 
<li>First item</li> 
<li>Second item</li> 
<li>Third item</li> 
</ol> 
</body> 
</html> 
``` 
- ``: Defines an ordered list.
- ``: Defines a list item.

Unordered Lists
Unordered lists are used when the order of items does not matter. The
`` tag defines an unordered list, and each item in the list is defined
by an `` tag.
Example of an Unordered List
```html 
<!DOCTYPE html> 
<html> 
<head> 
<title>Unordered List Example</title> 
</head> 
<body> 
<ul> 
<li>First item</li> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

105 

 

<li>Second item</li> 
<li>Third item</li> 
</ul> 
</body> 
</html> 
``` 
- ``: Defines an unordered list.
- ``: Defines a list item.

Nested Lists
Lists can be nested within other lists to create sub-lists.
Example of a Nested List
```html 
<!DOCTYPE html> 
<html> 
<head> 
<title>Nested List Example</title> 
</head> 
<body> 
<ul> 
<li>First item 
<ul> 
<li>Sub-item 1</li> 
<li>Sub-item 2</li> 
</ul> 
</li> 
<li>Second item</li> 
<li>Third item</li> 
</ul> 
</body> 
</html> 
``` 
3.4 Links

Links are used to navigate from one page to another or to different
parts of the same page. The `<a>` tag defines a hyperlink, and the
`href` attribute specifies the URL of the page the link goes to.
Example of a Link
```html 
<!DOCTYPE html> 
<html> 
<head> 
<title>Link Example</title> 
</head> 
<body> 
<p>Visit the <a  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

106 

 

href="https://www.example.com">Example</a>website.</p> 
</body> 
</html> 
``` 
- `<a>`: Defines a hyperlink.
- `href`: Specifies the URL of the linked page.

Internal Links
Internal links navigate to different sections within the same page. This
is achieved using the `id` attribute.
Example of Internal Links
```html 
<!DOCTYPE html> 
<html> 
<head> 
<title>Internal Link Example</title> 
</head> 
<body> 
<h2 id="section1">Section 1</h2> 
<p>This is the first section of the document.</p> 
<h2 id="section2">Section 2</h2> 
<p>This is the second section of the document.</p> 
<a href="#section1">Go to Section 1</a> 
<a href="#section2">Go to Section 2</a> 
</body> 
</html> 
``` 
- `id`: Defines a unique identifier for an element.
- `href="#id"`: Creates a link to an element with the specified `id`.

3.5 Combining Elements

HTML elements can be combined to create more complex structures
and layouts.
Example Combining Headings, Paragraphs, Lists, and Links
```html 
<!DOCTYPE html> 
<html> 
<head> 
<title>Combined Elements Example</title> 
</head> 
<body> 
<h1>Welcome to My Webpage</h1> 
<p>This is a paragraph introducing the content of the page.</p> 
<h2>Topics Covered</h2> 
<ul> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

107 

 

<li>HTML Basics</li> 
<li>CSS Styling 
<ul> 
<li>Selectors</li> 
<li>Properties</li> 
</ul> 
</li> 
<li>JavaScript Programming</li> 
</ul> 
<h2>Useful Links</h2> 
<p>Here are some useful links:</p> 
<ol> 
<li><a href="https://www.w3schools.com">W3Schools</a></li> 
<li><a href="https://developer.mozilla.org">MDN Web Docs</a></li> 
</ol> 
</body> 
</html> 
 
Self-Assessment Exercise(s) 
 
(1) What is the correct HTML element for the largest heading? 
A) <head> 
B) <heading> 
C) <h1> 
D) <h6> 
Answer: C) <h1> 
 
(2) Which HTML element is used to define a paragraph? 
A) <paragraph> 
B) <para> 
C) <p> 
D) <pg> 
Answer: C) <p> 
 
(3) How do you create a hyperlink in HTML? 
A) <link href="url">Link</link> 
B) <a url="http://example.com">Link</a> 
C) <a href="http://example.com">Link</a> 
D) <hyperlink src="http://example.com">Link</hyperlink> 
Answer: C) <a href="http://example.com">Link</a> 
 
(4) Which of the following elements is used to create an unordered list 
in HTML? 
A) <ol> 
B) <ul> 
C) <list> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

108 

 

D) <uolist> 
Answer: B) <ul> 
 
(5) How do you add a background color in HTML? 
A) <body bg="yellow"> 
B) <body background="yellow"> 
C) <body style="background-color:yellow;"> 
D) <body bgcolor="yellow"> 
Answer: C) <body style="background-color:yellow;"> 
 
Conclusion 
 
Understanding HTML syntax and basic markup is fundamental for web 
development. This guide covered the basic structure of an HTML 
document and explained how to use headings, paragraphs, lists, and 
links. By mastering these elements, you can create well-structured and 
navigable web pages. Experiment with combining these elements to 
build more complex and dynamic content. 
 
  
 
              4.0 Summary 
 
HTML is the standard language for creating web pages and web 
applications. HTML syntax consists of a series of elements that define 
the structure and content of a webpage. Each element is enclosed 
within angle brackets, with a start tag (e.g., <p>) and an end tag (e.g., 
</p>) that wraps the content. Some elements, like <img>, are self-
closing and do not require an end tag. Tags can have attributes, which 
provide additional information about the element and are included 
within the start tag (e.g., <a href="https://example.com">). These 
attributes typically follow a key-value pair format. 
 
The basic markup unit in HTML is the element. Elements can be 
nested inside one another to create a hierarchical structure that defines 
the layout and organization of the webpage. The most common 
elements include headings (<h1> to <h6>), paragraphs (<p>), links 
(<a>), images (<img>), lists (<ul>, <ol>, and <li>), and divs (<div>) 
for block-level content grouping. The document starts with a 
<!DOCTYPE html> declaration, followed by an <html> element that 
contains the <head> and <body> sections. The <head> element 
typically includes metadata, links to stylesheets, and scripts, while the 
<body> element contains the actual content that users interact with on 
the webpage. 
 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

109 

 

 
 
           5.0 References/Further Reading 
 
Robbins, J. N. (2012). Learning web design: A beginner's guide to 

HTML, CSS, JavaScript, and web graphics. " O'Reilly Media, 
Inc.". 

 
Mercer, D. (2001). Schaum's Outline of HTML. McGraw-Hill, Inc.. 
 
Cook, C., & Schultz, D. (2007). Beginning HTML with CSS and 

XHTML: Modern Guide and Reference. Apress. 
 
Macaulay, M. (2017). Introduction to web interaction design: With 

Html and Css. Chapman and Hall/CRC. 
 
Tittel, E., & Noble, J. (2010). HTML, XHTML and CSS for dummies. 

John Wiley & Sons. 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

110 

 

Unit 4  Advanced 5HTML and XHTML Elements 
 
Contents 
 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 
3.0 Main Content 

3.1 The HTLM5 
3.2 HTML5 Syntax 
3.3 HTML5 Attributes 
3.4 HTML5 Web Forms 2.0 
3.5 History of XHTML 
3.6 XHTML Transitional DTD 
3.7 XHTML Frameset DTD 

4.0 Summary 
5.0 References/Further Reading 
 
 
            
           1.0 Introduction 
 
HTML5, the latest version of the HyperText Markup Language, is a 
core technology of the World Wide Web. It standardizes how web 
content is structured and presented. Introduced to enhance multimedia 
capabilities without relying on additional plugins like Flash, HTML5 
supports audio, video, and interactive elements natively. It also brings 
semantic elements such as <article>, <section>, and <nav>, which 
improve the readability of the code and the accessibility of web 
content. HTML5 is designed to be backward compatible, ensuring 
older web pages still function correctly, while introducing new features 
and improvements for modern web development. 
 
Extensible HyperText Markup Language (XHTML) is a variant of 
HTML that combines the flexibility of HTML with the strict syntax 
rules of Extensible Markup Language (XML). Introduced to ensure 
that web documents are well-formed and can be parsed by XML 
parsers, XHTML requires that elements are properly nested, all tags 
are closed, and attributes are quoted. This strictness enhances the 
consistency and reliability of web documents across different platforms 
and browsers. However, because of its rigidity, XHTML can be less 
forgiving than HTML, leading to potential issues if the syntax rules are 
not meticulously followed. Despite its advantages, the adoption of 
HTML5 has overshadowed XHTML due to HTML5’s more lenient 
syntax and broader feature set. 
 
 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

111 

 

        
 
             2.0  Intended Learning Outcomes (ILOs) 
 
By the end of this unit, you will be able to: 
 
• discuss the meaning of HTML5 and XHTLM Syntax 
• explain HTML5 Attributes  
• identify simple XHTML Elements 
• use simple HTML5 and XHTML elements in practical designs  

 
 

3.0  Main Content 
 
3.1 The HTLM5 
 
HTML5 is the latest major version of HTML, the standard language 
for creating and structuring web content. It was designed to improve 
the capabilities of the web by enhancing support for multimedia, 
interactive elements, and APIs, while ensuring compatibility across 
various devices and browsers. HTML5 introduces a variety of new 
elements and attributes that provide more semantic meaning, such as 
<header>, <footer>, <article>, <section>, and <nav>, which help 
developers structure their content more clearly and improve 
accessibility. Additionally, HTML5 removes many of the older, 
deprecated elements and attributes from previous versions, 
streamlining the development process. 
 
One of the most significant advancements in HTML5 is its native 
support for multimedia elements, such as <video> and <audio>, which 
allow for the embedding of media files without requiring third-party 
plugins like Flash. This enhances the user experience by providing 
more reliable and efficient ways to display multimedia content. 
HTML5 also includes new APIs for drawing graphics (via the 
<canvas> element), offline web applications, local storage, and 
geolocation, which enable developers to create more dynamic and 
interactive web applications. These features, combined with improved 
error handling and better parsing rules, make HTML5 a powerful and 
flexible tool for modern web development. 
 
HTML5 is the next major revision of the HTML standard superseding 
HTML 4.01, XHTML 1.0, and XHTML 1.1. HTML5 is a standard for 
structuring and presenting content on the World Wide Web. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

112 

 

HTML5 is a cooperation between the World Wide Web Consortium 
(W3C) and the Web Hypertext Application Technology Working 
Group (WHATWG). 
 
The new standard incorporates features like video playback and drag-
and-drop that have been previously dependent on third-party browser 
plug-ins such as Adobe Flash, Microsoft Silverlight, and Google 
Gears. 
 
Browser Support 
The latest versions of Apple Safari, Google Chrome, Mozilla Firefox, 
and Opera all support many HTML5 features and Internet Explorer 9.0 
will also have support for some HTML5 functionality. 
 
The mobile web browsers that come pre-installed on iPhones, iPads, 
and Android phones all have excellent support for HTML5. 
 
New Features 
HTML5 introduces several new elements and attributes that can help 
you in building modern websites. Here is a set of some of the most 
prominent features introduced in HTML5. 
 
New Semantic Elements: These are like <header>, <footer>, and 
<section>. 
 
Forms 2.0: Improvements to HTML web forms where new attributes 
have been introduced for <input> tag. 
Persistent Local Storage − To achieve without resorting to third-party 
plugins. 
 
WebSocket: A next-generation bidirectional communication 
technology for web applications. 
 
Server-Sent Events: HTML5 introduces events that flow from a web 
server to the web browsers and they are called Server-Sent Events 
(SSE). 
 
Canvas − This supports a two-dimensional drawing surface that you 
can program with JavaScript. 
 
Audio & Video : You can embed audio or video on your webpages 
without resorting to third-party plugins. 
 
Geolocation: Now visitors can choose to share their physical location 
with your web application. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

113 

 

Microdata:  This lets you create your vocabularies beyond HTML5 
and extend your web pages with custom semantics. 
 
Drag and drop Drag and drop the items from one location to another 
location on the same webpage. 
 
Backward Compatibility 
HTML5 is designed, as much as possible, to be backward compatible 
with existing web browsers. Its new features have been built on 
existing features and allow you to provide fallback content for older 
browsers. 
 
It is suggested to detect support for individual HTML5 features using a 
few lines of JavaScript. 
 
3.2 HTML5 Syntax 
 
The HTML 5 language has a "custom" HTML syntax that is 
compatible with HTML 4 and XHTML1 documents published on the 
Web, but is not compatible with the more esoteric SGML features of 
HTML 4. 
HTML 5 does not have the same syntax rules as XHTML where we 
needed lower case tag names, quoting our attributes, an attribute had to 
have a value and to close all empty elements. 
HTML5 comes with a lot of flexibility and it supports the following 
features Uppercase tag names. 
Quotes are optional for attributes. 
Attribute values are optional. 
Closing empty elements are optional. 
The DOCTYPE 
DOCTYPEs in older versions of HTML were longer because the 
HTML language was SGML based and therefore required a reference 
to a DTD. 
HTML 5 authors would use simple syntax to specify DOCTYPE as 
follows − 
<!DOCTYPE html> 
The above syntax is case-insensitive. 
Character Encoding 
HTML 5 authors can use simple syntax to specify Character Encoding 
as follows − 
<meta charset = "UTF-8"> 
The above syntax is case-insensitive. 
The <script> tag 
It's common practice to add a type attribute with a value of 
"text/javascript" to script elements as follows − 
<script type = "text/javascript" src = "scriptfile.js"></script> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

114 

 

HTML 5 removes extra information required and you can use simply 
following syntax − 
<script src = "scriptfile.js"></script> 
The <link> tag 
So far you were writing <link> as follows − 
<link rel = "stylesheet" type = "text/css" href = "stylefile.css"> 
HTML 5 removes extra information required and you can simply use 
the following syntax − 
<link rel = "stylesheet" href = "stylefile.css"> 
HTML5 Elements 
HTML5 elements are marked up using start tags and end tags. Tags are 
delimited using angle brackets with the tag name in between. 
The difference between start tags and end tags is that the latter includes 
a slash before the tag name. 
Following is the example of an HTML5 element − 
<p>...</p> 
HTML5 tag names are case insensitive and may be written in all 
uppercase or mixed case, although the most common convention is to 
stick with lowercase. 
Most of the elements contain some content like <p>...</p> contains a 
paragraph. Some elements, however, are forbidden from containing 
any content at all and these are known as void elements. For 
example, br, hr, link, meta, etc. 
Here is a complete list of HTML5 Elements. 
 
3.3 HTML5 Attributes 
 
Elements may contain attributes that are used to set various properties 
of an element. 
Some attributes are defined globally and can be used on any element, 
while others are defined for specific elements only. All attributes have 
a name and a value and look like as shown below in the example. 
Following is the example of an HTML5 attribute which illustrates how 
to mark up a div element with an attribute named class using a value of 
"example" − 
<div class = "example">...</div> 
Attributes may only be specified within start tags and must never be 
used in end tags. 
HTML5 attributes are case insensitive and may be written in all 
uppercase or mixed case, although the most common convention is to 
stick with lowercase. 
Here is a complete list of HTML5 Attributes. 
 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

115 

 

HTML5 Document 
The following tags have been introduced for better structure − 
section − This tag represents a generic document or application 
section. It can be used together with h1-h6 to indicate the document 
structure. 
article − This tag represents an independent piece of content of a 
document, such as a blog entry or newspaper article. 
aside − This tag represents a piece of content that is only slightly 
related to the rest of the page. 
header − This tag represents the header of a section. 
footer − This tag represents a footer for a section and can contain 
information about the author, copyright information, et cetera. 
nav − This tag represents a section of the document intended for 
navigation. 
dialog − This tag can be used to mark up a conversation. 
figure − This tag can be used to associate a caption together with some 
embedded content, such as a graphic or video. 
The markup for an HTML 5 document would look like the following − 
<!DOCTYPE html> 
 
<html> 
<head> 
<meta charset = "utf-8"> 
<title>...</title> 
</head> 
 
<body> 
<header>...</header> 
<nav>...</nav> 
 
<article> 
<section> 
            ...  
</section> 
</article> 
<aside>...</aside> 
 
<footer>...</footer> 
</body> 
</html> 
Live Demo 
<!DOCTYPE html> 
 
<html> 
<head> 
<meta charset = "utf-8"> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

116 

 

<title>...</title> 
</head> 
 
<body> 
<header role = "banner"> 
<h1>HTML5 Document Structure Example</h1> 
<p>This page should be tried in safari, chrome or Mozila.</p> 
</header> 
 
<nav> 
<ul> 
<li><a href = "https://www.tutorialspoint.com/html">HTML 
Tutorial</a></li> 
<li><a href = "https://www.tutorialspoint.com/css">CSS 
Tutorial</a></li> 
<li><a href = "https://www.tutorialspoint.com/javascript"> 
            JavaScript Tutorial</a></li> 
</ul> 
</nav> 
 
<article> 
<section> 
<p>Once article can have multiple sections</p> 
</section> 
</article> 
 
<aside> 
<p>This is  aside part of the web page</p> 
</aside> 
 
<footer> 
<p>Created by <a href = "https://tutorialspoint.com/">Tutorials 
Point</a></p> 
</footer> 
 
</body> 
</html> 
Some attributes are defined globally and can be used on any element, 
while others are defined for specific elements only. All attributes have 
a name and a value and look like as shown below in the example. 
Following is the example of an HTML5 attributes which illustrates 
how to mark up a div element with an attribute named class using a 
value of "example" − 
<div class = "example">...</div> 
Attributes may only be specified within start tags and must never be 
used in end tags. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

117 

 

HTML5 attributes are case insensitive and may be written in all 
uppercase or mixed case, although the most common convention is to 
stick with lowercase. 
Standard Attributes 
The attributes listed below are supported by almost all the HTML 5 
tags. 

Attribute Options Function 

accesskey User Defined 
Specifies a keyboard shortcut to 
access an element. 

Align right, left, center Horizontally aligns tags 

background URL 
Places an background image 
behind an element 

Bgcolor 
numeric, 
hexidecimal, RGB 
values 

Places a background color 
behind an element 

Class User Defined 
Classifies an element for use 
with Cascading Style Sheets. 

contenteditable true, false 
Specifies if the user can edit the 
element's content or not. 

contextmenu Menu id 
Specifies the context menu for 
an element. 

data-XXXX User Defined 

Custom attributes. Authors of a 
HTML document can define 
their own attributes. Must start 
with "data-". 

Draggable true,false, auto 
Specifies whether or not a user 
is allowed to drag an element. 

Height Numeric Value 
Specifies the height of tables, 
images, or table cells. 

Hidden Hidden 
Specifies whether element 
should be visible or not. 

Id User Defined 
Names an element for use with 
Cascading Style Sheets. 

Item List of elements Used to group elements. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

118 

 

Itemprop List of items Used to group items. 

spellcheck true, false 
Specifies if the element must 
have it's spelling or grammar 
checked. 

Style CSS Style sheet 
Specifies an inline style for an 
element. 

Subject User define id 
Specifies the element's 
corresponding item. 

Tabindex Tab number 
Specifies the tab order of an 
element. 

Title User Defined 
"Pop-up" title for your 
elements. 

Valign 
top, middle, 
bottom 

Vertically aligns tags within an 
HTML element. 

Width Numeric Value 
Specifies the width of tables, 
images, or table cells. 

For a complete list of HTML5 Tags and related attributes, please check 
our reference to HTML5 Tags. 
 
Custom Attributes 
A new feature being introduced in HTML 5 is the addition of custom 
data attributes. 
A custom data attribute starts with data- and would be named based on 
your requirement. Here is a simple example − 
<div class = "example" data-subject = "physics" data-level = 
"complex"> 
   ... 
</div> 
The above code will be perfectly valid HTML5 with two custom 
attributes called datasubject and data-level. You would be able to get 
the values of these attributes using JavaScript APIs or CSS in similar 
way as you get for standard attributes. 
 
HTML5 Events 
When users visit your website, they perform various activities such as 
clicking on text and images and links, hover over defined elements, 
etc. These are examples of what JavaScript calls events. 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

119 

 

We can write our event handlers in Javascript or VBscript and you can 
specify these event handlers as a value of event tag attribute. The 
HTML5 specification defines various event attributes as listed below − 
We can use the following set of attributes to trigger 
any javascript or vbscript code given as value when there is any event 
that takes place for any HTML5 element. 
 
3.4 HTML5 Web Forms 2.0 
 
Web Forms 2.0 is an extension to the forms features found in HTML4. 
Form elements and attributes in HTML5 provide a greater degree of 
semantic mark-up than HTML4 and free us from a great deal of 
tedious scripting and styling that was required in HTML4. 
The <input> element in HTML4 
 
HTML4 input elements use the type attribute to specify the data 
type.HTML4 provides following types – 
 

No. Type & Description 

1 
text 
A free-form text field, nominally free of line breaks. 

2 
password 
A free-form text field for sensitive information, nominally free 
of line breaks. 

3 
checkbox 
A set of zero or more values from a predefined list. 

4 
radio 
An enumerated value. 

5 
submit 
A free form of button initiates form submission. 

6 
file 
An arbitrary file with a MIME type and optionally a file name. 

7 

image 
A coordinate, relative to a particular image's size, with the 
extra semantic that it must be the last value selected and 
initiates form submission. 

8 
hidden 
An arbitrary string that is not normally displayed to the user. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

120 

 

9 
select 
An enumerated value, much like the radio type. 

10 
textarea 
A free-form text field, nominally with no line break 
restrictions. 

11 
button 
A free form of button which can initiates any event related to 
button. 

Following is the simple example of using labels, radio buttons, and 
submit buttons. 
<form action = "http://example.com/cgiscript.pl" method = "post"> 
<p> 
<label for = "firstname">first name: </label> 
<input type = "text" id = "firstname"><br /> 
 
<label for = "lastname">last name: </label> 
<input type = "text" id = "lastname"><br /> 
 
<label for = "email">email: </label> 
<input type = "text" id = "email"><br> 
 
<input type = "radio" name = "sex" value = "male"> Male<br> 
<input type = "radio" name = "sex" value = "female"> Female<br> 
<input type = "submit" value = "send"><input type = "reset"> 
</p> 
</form> 
 ...  
The <input> element in HTML5 
Apart from the above-mentioned attributes, HTML5 input elements 
introduced several new values for the type attribute. These are listed 
below. 
NOTE − Try all the following example using latest version 
of Opera browser. 

No. Type & Description 

1 

datetime 
A date and time (year, month, day, hour, minute, second, 
fractions of a second) encoded according to ISO 8601 with the 
time zone set to UTC. 

2 
datetime-local 
A date and time (year, month, day, hour, minute, second, 
fractions of a second) encoded according to ISO 8601, with no 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

121 

 

time zone information. 

3 
date 
A date (year, month, day) encoded according to ISO 8601. 

4 
month 
A date consisting of a year and a month encoded according to 
ISO 8601. 

5 
week 
A date consisting of a year and a week number encoded 
according to ISO 8601. 

6 
time 
A time (hour, minute, seconds, fractional seconds) encoded 
according to ISO 8601. 

7 
number 
It accepts only numerical value. The step attribute specifies the 
precision, defaulting to 1. 

8 
range 
The range type is used for input fields that should contain a value 
from a range of numbers. 

9 

email 
It accepts only email value. This type is used for input fields that 
should contain an e-mail address. If you try to submit a simple 
text, it forces to enter only email address in email@example.com 
format. 

10 

url 
It accepts only URL value. This type is used for input fields that 
should contain a URL address. If you try to submit a simple text, 
it forces to enter only URL address either in 
http://www.example.com format or in http://example.com 
format. 

The <output> element 
HTML5 introduced a new element <output> which is used to represent 
the result of different types of output, such as output written by a 
script. 
You can use the for attribute to specify a relationship between the 
output element and other elements in the document that affected the 
calculation (for example, as inputs or parameters). The value of the for 
attribute is a space-separated list of IDs of other elements. 
<!DOCTYPE HTML> 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

122 

 

<html> 
<head> 
<script type = "text/javascript"> 
 
         function showResult() { 
            x = document.forms["myform"]["newinput"].value; 
document.forms["myform"]["result"].value = x; 
         } 
</script> 
</head> 
 
<body> 
 
<form action = "/cgi-bin/html5.cgi" method = "get" name = 
"myform"> 
         Enter a value :<input type = "text" name = "newinput" /> 
<input type = "button" value = "Result"  onclick = "showResult();" /> 
<output name = "result"></output> 
</form> 
   
</body> 
</html> 
 
3.5 History of XHTML 
 
EXtensible HyperText Markup Language (XHTML) is a mix of 
HTML and XML, very similar to HTML but stricter. It’s like a 
rulebook for creating web pages that browsers easily understand. 
Unlike HTML, you have to be careful and follow the rules exactly. 
Most browsers support it. Just think of it as a more precise way to 
write web code. 
 
It was developed by the World Wide Web Consortium (W3C) and 
helps web developers transition from HTML to XML. With XHTML, 
developers can enter the XML world with all its features while still 
ensuring backward and future compatibility of the content. The 
XHTML family includes three document types; the first is XHTML 
1.0, which was recommended by W3C on January 26, 2000. The 
second is XHTML 1.1, which was recommended by W3C on May 31, 
2001. 
 
The third is XHTML5, a standard used for developing an XML 
adaptation of the HTML5 specification. An XHTML document must 
have an XHTML <!DOCTYPE> declaration. 
Elements of XHTML: 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

123 

 

XHTML Element Description 

<!DOCTYPE> 

Used to declare the Document Type 
Definition (DTD), specifying the rules for 
the markup language, ensuring proper 
rendering in browsers. 

<html> 
Encloses the entire HTML or XHTML 
document, serving as the root element. 

<head> 

Contains meta-information about the 
document, such as the title, character set, 
linked stylesheets, and other essential 
elements. 

<title> 
Nested within the head section, specifies the 
title of the document, displayed in the 
browser’s title bar or tab. 

<body> 

Encloses the content of the web page, 
including text, images, links, and other 
HTML elements. It represents the visible 
part of the document displayed in the 
browser. 

When creating an XHTML web page, it is necessary to include a DTD 
(Document Type Definition) declaration. There are three types of DTD 
which are discussed below: 
 
3.6 XHTLM Transitional DTD : 
 
It is supported by the older browsers which do not have inbuilt 
cascading style sheets supports. Several attributes are enclosed in the 
body tag which are not allowed in strict DTD.  
Syntax: 
<!DOCTYPE html 
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"DTD/xhtml1-transitional.dtd"> 
 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
lang="en"> 
 
Example: In this example we will see the code for writing an XHTML 
document with an example.  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

124 

 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 
Transitional//EN" "DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
lang="en"> 
 
<head> 
 <title>Transitional DTD XHTML</title> 
</head> 
 
<body bgcolor="#dae1ed"> 
 <div style="color:#090;font-size:40px; 
    font-weight:bold;text-align:center; 
    margin-bottom:-25px;">IFT 203 Course 
Materials</div> 
 <p style="text-align:center;font-size:20px;"> 
  A computer science portal</p> 
 <p style="text-align:center;font-size:20px;"> 
  Option to choose month: 
  <select name="month"> 
   <option selected="selected">January</option> 
   <option>February</option> 
   <option>March</option> 
   <option>April</option> 
   <option>May</option> 
   <option>June</option> 
   <option>July</option> 
   <option>Augusy</option> 
   <option>September</option> 
   <option>October</option> 
   <option>November</option> 
   <option>December</option> 
  </select> 
 </p> 
</body> 
</html> 
Strict DTD: 
Strict DTD is used when XHTML page contains only markup 
language. Strict DTD is used together with cascading style sheets, 
because this attribute does not allow CSS property in body tag.  
Syntax: 
<!DOCTYPE html 
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
"DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

125 

 

lang="en"> 
 
Example 2: In this example we will see the code for writing an 
XHTML document with an example for strict DTD.  
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
"DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
lang="en"> 
 
<head> 
 <title>Strict DTD XHTML</title> 
</head> 
 
<body> 
 <div style="color:#090;font-size:40px; 
    font-weight:bold;text-align:center; 
    margin-bottom:-25px;">IFT 203 Course 
Materials</div> 
 <p style="text-align:center;font-size:20px;"> 
  A computer science portal</p> 
 <p style="text-align:center;font-size:20px;"> 
  Option to choose month: 
  <select name="month"> 
   <option selected="selected">January</option> 
   <option>February</option> 
   <option>March</option> 
   <option>April</option> 
   <option>May</option> 
   <option>June</option> 
   <option>July</option> 
   <option>Augusy</option> 
   <option>September</option> 
   <option>October</option> 
   <option>November</option> 
   <option>December</option> 
  </select> 
 </p> 
</body> 
</html> 
 
3.7 XHTML Frameset DTD: 
 
The frameset DTD is used when XHTML page contains frames. This 
DTD is identical to the HTML 4.01 Transitional DTD except for the 
content model of the HTML element. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

126 

 

Syntax: 
<!DOCTYPE html 
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" 
"DTD/xhtml1-frameset.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
lang="en"> 
 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 
Frameset//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
frameset.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" 
 xml:lang="en" lang="en"> 
 
<head> 
 <title>Frameset DTD XHTML</title> 
</head> 
<frameset cols="30%, 20%, *"> 
 <frameset rows="40%, 30%, *"> 
  <frame src="gfg.html" /> 
  <frame src="gfg1.html" /> 
  <frame src="geeks.html" /> 
 </frameset> 
 <frameset rows="40%, 60%"> 
  <frame src="g4g.html" /> 
  <frame src="g4g1.html" /> 
 </frameset> 
 <frameset rows="20%, 20%, 30%, *"> 
  <frame src="IFT 203 Course Materials.html" /> 
  <frame src="IFT 203 Course Materials1.html" /> 
  <frame src="IFT 203 Course Materials2.html" /> 
  <frame src="IFT 203 Course Materials3.html" /> 
 </frameset> 
</frameset> 
</html> 
Why use XHTML? 
XHTML documents are validated with standard XML tools. 
It is easy to maintain, convert, and edit documents in the long run. 
It is used to define the quality standard of web pages. 
XHTML is an official standard of the W3C, your website becomes 
more compatible and accurate with many browsers. 
 
Benefits of XHTML: 
All XHTML tags must have closing tags and are nested correctly. This 
generates cleaner code. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

127 

 

XHTML documents are lean which means they use less bandwidth. 
This reduces cost particularly if your web site has 1000s of pages. 
XHTML documents are well formatted well–formed and can easily be 
transported to wireless devices, Braille readers and other specialized 
web environments. 
All new developments will be in XML (of which XHTML is an 
application). 
XHTML works in association with CSS to create web pages that can 
easily be updated. 
 
Difference Between HTML and XHTML  

HTML XHTML 

HTML or HyperText Markup 
Language is the main markup 
language for creating web 
pages 

XHTML (Extensible HyperText 
Markup Language) is a family of 
XML markup languages that mirror 
or extend versions of the widely 
used Hypertext Markup Language 
(HTML) 

Flexible framework requiring 
lenient HTML specific parser 

Restrictive subset of XML which 
needs to be parsed with standard 
XML parsers 

Proposed by Tim Berners-Lee 
in 1987 

World Wide Web Consortium 
Recommendation in 2000. 

Application of Standard 
Generalized Markup Language 
(SGML). 

Application of XML 

Extended from SGML. Extended from XML, HTML 

 
Self-Assessment Exercise(s) 
 
(1)  What does HTML stand for? 
A.  Hyperlinks and Text Markup Language 
B.  Home Tool Markup Language 
C.  Hyper Text Markup Language 
D.  Hyperlinks and Text Modeling Language 
Answer: C. Hyper Text Markup Language 
 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

128 

 

(2)  Which of the following is true about XHTML? 
A.  XHTML is case-insensitive. 
B.  XHTML elements must be properly nested. 
C.  XHTML does not require closing tags. 
D.  XHTML is more lenient with coding errors compared to HTML. 
Answer: B. XHTML elements must be properly nested. 
 
(3)  Which HTML tag is used to define an internal style sheet? 
A.  <style> 
B.  <css> 
C.  <script> 
D.  <link> 
Answer: A. <style> 
 
(4)  In XHTML, which attribute must be present in every <img> tag 

to ensure the document is valid? 
A.  src 
B. alt 
C.  title 
D.  width 
Answer: B. alt 
 
(5)  Which of the following is a correct way to write a self-closing 

tag in XHTML? 
A.  <img src="image.jpg"> 
B.  <img src="image.jpg" /> 
C.  <img src="image.jpg"></img> 
D.  <img src="image.jpg" / 
Answer: B. <img src="image.jpg" /> 
 
Conclusion 
HTML5 and XHTML represent significant advancements in web 
development, each with distinct benefits and applications. HTML5, 
with its enhanced multimedia support, semantic elements, and 
backward compatibility, has become the preferred standard for modern 
web development due to its flexibility and comprehensive feature set. 
In contrast, XHTML provides a more stringent framework by 
enforcing strict XML-based syntax rules, ensuring well-formed and 
consistently rendered web documents. However, its rigidity can be 
challenging compared to the leniency of HTML5. Overall, while 
XHTML emphasizes structural accuracy and consistency, HTML5's 
balance of robustness and ease of use has made it the dominant choice 
for contemporary web design and development. 
 
  
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

129 

 

 
 
4.0 Summary 

 
HTML5 is the most recent iteration of the HyperText Markup 
Language, which serves as the foundation for structuring and 
presenting content on the web. It was developed to improve and 
simplify multimedia handling, supporting audio, video, and interactive 
content directly within the browser without needing external plugins. 
HTML5 introduces semantic elements like <article>, <section>, and 
<nav>, enhancing the clarity and structure of web content. These 
additions not only improve code readability but also assist in better 
search engine optimization and accessibility. HTML5 is designed to be 
backward compatible, ensuring older content remains functional while 
providing modern web developers with new, powerful tools and 
features. XHTML blends the elements of HTML with the stricter 
syntax rules of XML, aiming to create more rigorously structured web 
documents. This standard ensures that web pages are well-formed, 
meaning that all tags must be properly nested and closed, and attributes 
must be correctly quoted. Such strictness facilitates consistent 
rendering across different browsers and platforms, reducing 
discrepancies. However, XHTML's rigidity can lead to challenges if 
the syntax is not precisely followed, making it less forgiving than 
HTML. With the advent of HTML5, which offers both leniency in 
syntax and a broad range of new features, XHTML has seen a decline 
in popularity despite its benefits in enforcing clean and reliable code. 
 
 
   
              5.0 References/Further Reading 
 
Robbins, J. N. (2012). Learning web design: A beginner's guide to 

HTML, CSS, JavaScript, and web graphics. " O'Reilly Media, 
Inc.". 

 
McGrath, M. (2020). HTML in easy steps. In Easy Steps. 
 
Tabarés, R. (2021). HTML5 and the evolution of HTML; tracing the 

origins of digital platforms. Technology in Society, 65, 101529. 
 
Macaulay, M. (2017). Introduction to web interaction design: With 

Html and Css. Chapman and Hall/CRC. 
 
Rebah, H. B., Boukthir, H., & Chedebois, A. (2022). Website Design 

and Development with HTML5 and CSS3. John Wiley & Sons. 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

130 

 

MODULE 3  CASCADING STYLE SHEET (CSS) BASICS 
 
MODULE INTRODUCTION 
 
Cascading Style Sheets (CSS) is a cornerstone technology in web 
development, enabling the separation of content from presentation. By 
controlling the visual and aural layout of web pages, CSS enhances user 
experience and accessibility, allowing developers to create visually 
appealing and responsive designs. Understanding CSS is crucial for 
anyone looking to build or maintain modern websites, as it provides the 
tools to manipulate fonts, colors, layouts, and overall aesthetics with 
precision and efficiency. The CSS Basics module serves as an 
introductory guide to the fundamental concepts and techniques of CSS. 
This module covers essential topics such as selectors, properties, values, 
and the box model, providing a solid foundation for more advanced 
styling practices. Through practical examples and hands-on exercises, 
learners will gain the skills needed to apply CSS effectively, 
transforming plain HTML into dynamic, engaging web pages that work 
seamlessly across different devices and screen sizes. Whether you're a 
novice developer or looking to refresh your knowledge, this module will 
equip you with the core competencies required to harness the power of 
CSS in your web projects. 
 
Unit 1  Introduction to Cascading Style Sheet 
Unit 2  Styling with Cascading Style Sheet 
 
Unit 1  Introduction to Cascading Style Sheet (CSS) 
 
Contents 
 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 
3.0 Main Content 

3.1 Cascading Style Sheets Introduction 
3.2 CSS basics 
3.3 CSS statements 
3.4 CSS Comments 
3.5 CSS Colors 
3.6 CSS Borders 
3.7 CSS Lists 
3.8 CSS Tables 

4.0 Summary 
5.0 Further Readings 
 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

131 

 

 
            
           1.0  Introduction 
 
Cascading Style Sheets (CSS) are a cornerstone technology in modern 
web development, working in tandem with HTML and JavaScript to 
create visually appealing and interactive web pages. CSS is a style 
sheet language used for describing the presentation of a document 
written in HTML or XML. It controls the layout of multiple web pages 
all at once, allowing developers to create a consistent look and feel 
across a site with less code duplication. By separating content from 
design, CSS enhances flexibility and makes it easier to maintain 
websites. This unit will delve into the essentials of CSS, from its basic 
syntax and structure to advanced features such as responsive design. 
In this unit, we will explore how CSS enhances web accessibility and 
performance, ensuring websites are not only aesthetically pleasing but 
also user-friendly and efficient. You will learn how to apply various 
styles to elements, manage layouts using the box model, and 
implement complex designs with techniques like Flexbox and Grid. 
Additionally, this unit will cover best practices for writing clean and 
maintainable CSS code, leveraging tools like preprocessors and 
frameworks. Whether you are a novice developer or looking to refine 
your skills, this unit aims to provide a comprehensive understanding of 
CSS and its critical role in modern web development. 
 
 
 

2.0  Intended Learning Outcomes (ILOs) 
 
By the end of this unit, you will be able to: 
• discuss the meaning of CSS Syntax 
• explain CSS Syntax 
• identify simple CSS Elements 
• use simple CSS elements like list, colour, and table etc in 

practical designs  
 
 

3.0  Main Content 
 
3.1 Cascading Style Sheets Introduction 
 
Cascading Style Sheets (CSS) is a stylesheet language used to describe 
the presentation of a document written in HTML or XML (including 
XML dialects such as SVG, MathML, or XHTML). CSS describes 
how elements should be rendered on screen, paper, speech, or other 
media. CSS is a designed language intended to simplify the process of 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

132 

 

making web pages presentable. CSS allows you to apply styles to 
HTML documents. It describes how a webpage should look. It 
prescribes colors, fonts, spacing, etc. In short, you can make your 
website look however you want. CSS lets developers and designers 
define how it behaves, including how elements are positioned in the 
browser. 
 
HTML uses tags and CSS uses rulesets. CSS styles are applied to the 
HTML element using selectors. CSS is easy to learn and understand, 
but it provides powerful control over the presentation of an HTML 
document. 
 
CSS is among the core languages of the open web and is standardized 
across Web browsers according to W3C specifications. Previously, the 
development of various parts of CSS specification was done 
synchronously, which allowed the versioning of the latest 
recommendations. You might have heard about CSS1, CSS2.1, or even 
CSS3. There will never be a CSS3 or a CSS4; everything is now CSS 
without a version number. 
 
After CSS 2.1, the scope of the specification increased significantly 
and the progress on different CSS modules started to differ so much, 
that it became more effective to develop and release recommendations 
separately per module. Instead of versioning the CSS specification, 
W3C now periodically takes a snapshot of the latest stable state of the 
CSS specification and individual modules' progress. CSS modules now 
have version numbers, or levels, such as CSS Color Module Level 5. 
 
 
 
 
 
 
 
 
 
 
 
Why CSS? 
CSS saves time: You can write CSS once and reuse the same sheet in 
multiple HTML pages. 
 
Easy Maintenance: To make a global change simply change the style, 
and all elements in all the webpages will be updated automatically. 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

133 

 

Search Engines: CSS is considered a clean coding technique, which 
means search engines won’t have to struggle to “read” its content. 
 
Superior styles to HTML: CSS has a much wider array of attributes 
than HTML, so you can give a far better look to your HTML page in 
comparison to HTML attributes. 
 
Offline Browsing: CSS can store web applications locally with the 
help of an offline cache. Using this we can view offline websites. 
 
3.2 CSS basics 
 
CSS is the code that styles web content. CSS basics walks through 
what you need to get started. We'll answer questions like: How do I 
make text red? How do I make content display at a certain location in 
the (webpage) layout? How do I decorate my webpage with 
background images and colors? Like HTML, CSS is not a 
programming language. It's not a markup language either. CSS is what 
you use to selectively style HTML elements. For example, this CSS 
selects paragraph text, setting the color to red: 
p { 
  color: red; 
} 
To make the code work, we still need to apply this CSS (above) to your 
HTML document. Otherwise, the styling won't change the appearance 
of the HTML. 
Open your index.html file. Paste the following line in the head 
(between the <head> and </head> tags): 
HTML 
<link href="styles/style.css" rel="stylesheet" /> 
Let's dissect the CSS code for red paragraph text to understand how it 
works: 
 
 
 
 
 
 
 
 
 
 
 
The whole structure is called a ruleset. (The term ruleset is often 
referred to as just rule.) Note the names of the individual parts: 
Selector 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

134 

 

This is the HTML element name at the start of the ruleset. It defines 
the element(s) to be styled (in this example, <p> elements). To style a 
different element, change the selector. 
Declaration 
This is a single rule like color: red;. It specifies which of the 
element's properties you want to style. 
Properties 
These are ways in which you can style an HTML element. (In this 
example, color is a property of the <p> elements.) In CSS, you choose 
which properties you want to affect in the rule. 
Property value 
To the right of the property—after the colon—there is the property 
value. This chooses one out of many possible appearances for a given 
property. (For example, there are many color values in addition to red.) 
Note the other important parts of the syntax: 
Apart from the selector, each ruleset must be wrapped in curly braces. 
({}) 
Within each declaration, you must use a colon (:) to separate the 
property from its value or values. 
Within each ruleset, you must use a semicolon (;) to separate each 
declaration from the next one. 
To modify multiple property values in one ruleset, write them 
separated by semicolons, like this: 
CSSCopy to Clipboard 
p { 
  color: red; 
  width: 500px; 
  border: 1px solid black; 
} 
Selecting multiple elements 
You can also select multiple elements and apply a single ruleset to all 
of them. Separate multiple selectors by commas. For example: 
CSSCopy to Clipboard 
p, 
li, 
h1 { 
  color: red; 
} 
Different types of selectors 
There are many different types of selectors. The examples above 
use element selectors, which select all elements of a given type. But 
we can make more specific selections as well. Here are some of the 
more common types of selectors: 
Selector name What does it select Example 
Element selector 
(sometimes called a 

All HTML elements 
of the specified type. 

p 
selects <p> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

135 

 

Selector name What does it select Example 
tag or type selector) 

ID selector 

The element on the 
page with the 
specified ID. On a 
given HTML page, 
each id value should 
be unique. 

#my-id 
selects <p id="my-
id"> or <a id="my-id"> 

Class selector 

The element(s) on the 
page with the 
specified class. 
Multiple instances of 
the same class can 
appear on a page. 

.my-class 
selects <p class="my-
class"> and <a class="my-
class"> 

Attribute selector 
The element(s) on the 
page with the 
specified attribute. 

img[src] 
selects <img 
src="myimage.png"> but 
not <img> 

Pseudo-class 
selector 

The specified 
element(s), but only 
when in the specified 
state. (For example, 
when a cursor hovers 
over a link.) 

a:hover 
selects <a>, but only when 
the mouse pointer is 
hovering over the link. 

 
Fonts and text 
Now that we've explored some CSS fundamentals, let's improve the 
appearance of the example by adding more rules and information to 
the style.css file. 
First, find the output from Google Fonts that you previously 
saved. What will your website look like? Add the <link> element 
somewhere inside your index.html's head (anywhere between 
the <head> and </head> tags). It looks something like this: 
<link 
  href="https://fonts.googleapis.com/css?family=Open+Sans" 
  rel="stylesheet" /> 
This code links your page to a style sheet that loads the Open Sans font 
family with your webpage. 
Next, delete the existing rule you have in your style.css file. It was a 
good test, but let's not continue with lots of red text. 
Add the following lines (shown below), replacing the font-
family assignment with your font-family selection from What will your 
website look like? The property font family refers to the font(s) you 
want to use for text. This rule defines a global base font and font size 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

136 

 

for the whole page. Since <html> is the parent element of the whole 
page, all elements inside it inherit the same font size and font family. 
HTML { 
  font-size 10px; /* px means "pixels": the base font size is now 10 
pixels high */ 
  font-family: "Open Sans", sans-serif; /* this should be the rest of the 
output you got from Google Fonts */ 
} 
Note: Anything in CSS between /* and */ is a CSS comment. The 
browser ignores comments as it renders the code. CSS comments are a 
way for you to write helpful notes about your code or logic. 
Now let's set font sizes for elements that will have text inside the 
HTML body (<h1>, <li>, and <p>). We'll also center the heading. 
Finally, let's expand the second ruleset (below) with settings for line 
height and letter spacing to make body content more readable. 
h1 { 
  font-size: 60px; 
  text-align: center; 
} 
 
p, 
li { 
  font-size: 16px; 
  line-height: 2; 
  letter-spacing: 1px; 
} 
Adjust the px values as you like. Your work-in-progress should look 
similar to this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

137 

 

CSS: all about boxes 
Something you'll notice about writing CSS: a lot of it is about boxes. 
This includes setting size, color, and position. Most HTML elements 
on your page can be thought of as boxes sitting on top of other boxes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
CSS layout is mostly based on the box model. Each box taking up 
space on your page has properties like: 
padding, the space around the content. In the example below, it is the 
space around the paragraph text. 
border, the solid line that is just outside the padding. 
margin, the space around the outside of the border. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this section we also use: 
width (of an element). 
background-color, the color behind an element's content and padding. 
color, the color of an element's content (usually text). 
text-shadow sets a drop shadow on the text inside an element. 
display sets the display mode of an element. (keep reading to learn 
more) 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

138 

 

To continue, let's add more CSS. Keep adding these new rules at the 
bottom of style.css. Experiment with changing values to see what 
happens. 
Changing the page color 
html { 
  background-color: #00539f; 
} 
This rule sets a background color for the entire page. Change the color 
code to the color you chose in What will my website look like? 
Styling the body 
body { 
  width: 600px; 
  margin: 0 auto; 
  background-color: #ff9500; 
  padding: 0 20px 20px 20px; 
  border: 5px solid black; 
} 
There are several declarations for the <body> element. Let's go 
through this line-by-line: 
width: 600px; This forces the body to always be 600 pixels wide. 
margin: 0 auto; When you set two values on a property 
like margin or padding, the first value affects the element's 
top and bottom side (setting it to 0 in this case); the second value 
affects the left and right side. (Here, auto is a special value that divides 
the available horizontal space evenly between left and right). You can 
also use one, two, three, or four values, as documented in Margin 
Syntax. 
 
background color: #FF9500; This sets the element's background color. 
This project uses a reddish orange for the body background color, as 
opposed to dark blue for the <html> element. (Feel free to experiment.) 
padding: 0 20px 20px 20px; This sets four values for padding. The 
goal is to put some space around the content. In this example, there is 
no padding on the top of the body, and 20 pixels on the right, bottom 
and left. The values set top, right, bottom, left, in that order. As 
with margin, you can use one, two, three, or four values, as 
documented in Padding Syntax. 
 
border: 5px solid black; This sets values for the width, style and color 
of the border. In this case, it's a five-pixel–wide, solid black border, on 
all sides of the body. 
Positioning and styling the main page title 
h1 { 
  margin: 0; 
  padding: 20px 0; 
  color: #00539f; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

139 

 

  text-shadow: 3px 3px 1px black; 
} 
You may have noticed there's a horrible gap at the top of the body. 
That happens because browsers apply default styling to the h1 element 
(among others). That might seem like a bad idea, but the intent is to 
provide basic readability for unstyled pages. To eliminate the gap, we 
overwrite the browser's default styling with the setting margin: 0;. 
Next, we set the heading's top and bottom padding to 20 pixels. 
Following that, we set the heading text to be the same color as the 
HTML background color. 
Finally, text-shadow applies a shadow to the text content of the 
element. Its four values are: 
The first pixel value sets the horizontal offset of the shadow from the 
text: how far it moves across. 
The second pixel value sets the vertical offset of the shadow from the 
text: how far it moves down. 
The third pixel value sets the blur radius  of the shadow. A larger 
value produces a more fuzzy-looking shadow. 
The fourth value sets the base color of the shadow. 
Try experimenting with different values to see how it changes the 
appearance. 
Centering the image 
img { 
  display: block; 
  margin: 0 auto; 
} 
Next, we center the image to make it look better. We could use 
the margin: 0 auto trick again as we did for the body. But there are 
differences that require an additional setting to make the CSS work. 
The <body> is a block element, meaning it takes up space on the page. 
The margin applied to a block element will be respected by other 
elements on the page. In contrast, images are inline elements, for the 
auto margin trick to work on this image, we must give it block-level 
behavior using display: block;. 
Note: The instructions above assume that you're using an image 
smaller than the width set on the body. (600 pixels) If your image is 
larger, it will overflow the body, spilling into the rest of the page. To 
fix this, you can either: 1) reduce the image width using a graphics 
editor, or 2) use CSS to size the image by setting the width property on 
the <img> element with a smaller value. 
Note: Don't be too concerned if you don't completely 
understand display: block; or the differences between a block element 
and an inline element. It will make more sense as you continue your 
study of CSS. 
Syntax 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

140 

 

The basic goal of the CSS language is to allow a browser engine to 
paint elements of the page with specific features, like colors, 
positioning, or decorations. The CSS syntax reflects this goal and its 
basic building blocks are: 
 
The property  which is an identifier, that is a human-readable name, 
that defines which feature is considered. 
 
The value which describe how the feature must be handled by the 
engine. Each property has a set of valid values, defined by a formal 
grammar, as well as a semantic meaning, implemented by the browser 
engine. 
 
CSS declarations 
Setting CSS properties to specific values is the core function of the 
CSS language. A property and value pair is called a declaration, and 
any CSS engine calculates which declarations apply to every single 
element of a page in order to appropriately lay it out, and to style it. 
Both properties and values are case-insensitive by default in CSS. The 
pair is separated by a colon, ':' (U+003A COLON), and white spaces 
before, between, and after properties and values, but not necessarily 
inside, are ignored. 
 
 
 
 
 
 
 
 
 
 
 
There are hundreds of different properties in CSS and a practically 
endless number of different values. Not all pairs of properties and 
values are allowed and each property defines what are the valid values. 
When a value is not valid for a given property, the declaration is 
deemed invalid and is wholly ignored by the CSS engine. 
 
CSS declaration blocks 
Declarations are grouped in blocks, that is in a structure delimited by 
an opening brace, '{' (U+007B LEFT CURLY BRACKET), and a 
closing one, '}' (U+007D RIGHT CURLY BRACKET). Blocks 
sometimes can be nested, so opening and closing braces must be 
matched. 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

141 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Such blocks are naturally called declaration blocks and declarations 
inside them are separated by a semicolon, ';' (U+003B SEMICOLON). 
A declaration block may be empty, that is containing null declaration. 
White spaces around declarations are ignored. The last declaration of a 
block doesn't need to be terminated by a semicolon, though it is often 
considered good style to do it as it prevents forgetting to add it when 
extending the block with another declaration. 
A CSS declaration block is visualized in the diagram below. 
 
 
 
 
 
 
 
 
 
 
Note: The content of a CSS declaration block, that is a list of 
semicolon-separated declarations, without the initial and closing 
braces, can be put inside an HTML style attribute. 
 
CSS rulesets 
If style sheets could only apply a declaration to each element of a Web 
page, they would be pretty useless. The real goal is to apply different 
declarations to different parts of the document. 
 
CSS allows this by associating conditions with declarations blocks. 
Each (valid) declaration block is preceded by one or more comma-
separated selectors, which are conditions selecting some elements of 
the page. A selector list and an associated declarations block, together, 
are called a ruleset, or often a rule. 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

142 

 

A CSS ruleset (or rule) is visualized in the diagram below. 
 
 
 
 
 
 
 
 
 
 
As an element of the page may be matched by several selectors, and 
therefore by several rules potentially containing a given property 
several times, with different values, the CSS standard defines which 
one has precedence over the other and must be applied: this is called 
the cascade algorithm. 
 
Note: It is important to note that even if a ruleset characterized by a 
group of selectors is a kind of shorthand replacing rulesets with a 
single selector each, this doesn't apply to the validity of the ruleset 
itself. 
 
This leads to an important consequence: if one single basic selector is 
invalid, like when using an unknown pseudo-element or pseudo-class, 
the whole selector is invalid and therefore the entire rule is ignored (as 
invalid too). 
 
3.3 CSS statements 
 
Rulesets are the main building blocks of a style sheet, which often 
consists of only a big list of them. But there is other information that a 
Web author wants to convey in the style sheet, like the character set, 
other external style sheets to import, font face or list counter 
descriptions and many more. It will use other and specific kinds of 
statements to do that. 
 
A statement is a building block that begins with any non-space 
characters and ends at the first closing brace or semicolon (outside a 
string, non-escaped, and not included into another {}, () or [] pair). 
 
 
 
 
 
 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

143 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
There are two kinds of statements: 
Rulesets (or rules) that, as seen, associate a collection of CSS 
declarations to a condition described by a selector. 
 
At-rules that start with an at sign, '@' (U+0040 COMMERCIAL AT), 
followed by an identifier and then continuing up to the end of the 
statement, that is up to the next semicolon (;) outside of a block, or the 
end of the next block. Each type of at-rules, defined by the identifier, 
may have its own internal syntax, and semantics of course. They are 
used to convey meta-data information (like @charset or @import), 
conditional information (like @media or @document), or descriptive 
information (like @font-face). 
 
Any statement that isn't a ruleset or an at-rule is invalid and ignored. 
 
Nested statements 
There is another group of statements – the nested statements. These 
are statements that can be used in a specific subset of at-rules – 
the conditional group rules. These statements only apply if a specific 
condition is matched: the @media at-rule content is applied only if the 
device on which the browser runs matches the expressed condition; 
the @document at-rule content is applied only if the current page 
matches some conditions, and so on. In CSS1 and CSS2.1, 
only rulesets could be used inside conditional group rules. That was 
very restrictive and this restriction was lifted in CSS Conditionals 
Level 3. Now, though still experimental and not supported by every 
browser, conditional group rules can contain a wider range of content: 
rulesets but also some, but not all, at-rules. 
 
CSS comprises style rules that are interpreted by the browser and then 
applied to the corresponding elements in your document. A style rule 
set consists of a selector and declaration block. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

144 

 

Selector: A selector in CSS is used to target and select specific HTML 
elements to apply styles. 
 
Declaration: A declaration in CSS is a combination of a property and 
its corresponding value. 
// HTML Element 
<h1>IFT 203 Class</h2> 
 
// CSS Style 
h1 { color: blue; font-size: 12px; } 
 
Where -  
Selector - h1 
Declaration - { color: blue; font-size: 12px; }  
The selector points to the HTML element that you want to style. 
The declaration block contains one or more declarations separated by 
semicolons. 
Each declaration includes a CSS property name and a value, separated 
by a colon. 
Example 
CSS 
p {  
 color: blue;  
 text-align: center;  
} 
CSS declaration always ends with a semicolon, and declaration blocks 
are surrounded by curly braces. In this example, all paragraph element 
(<p> tag) will be centre-aligned, with a blue text color. 
Web Page with & without CSS 
Without CSS: In this example, we have not added any CSS style. 
html 
<!DOCTYPE html> 
<html> 
  
<head> 
 <title>Simple Web Page</title> 
</head> 
  
<body> 
 <main> 
 <h1>HTML Page</h1> 
 <p>This is a basic web page.</p> 
 </main> 
</body> 
</html> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

145 

 

Using CSS: In this example, we will add some CSS styles inside the 
HTML document to show how CSS makes a HTML page attractive 
and user-friendly. 
html 
<!DOCTYPE html> 
<html> 
 
<head> 
 <title>Simple web page</title> 
 <style> 
  main {  
   width: 600px;  
   height: 200px;  
   padding: 10px;  
   background: beige;  
  }  
   
  h1 {  
   color: olivedrab;  
   border-bottom: 1px dotted darkgreen;  
  }  
   
  p {  
   font-family: sans-serif;  
   color: orange;  
  }  
 </style> 
</head> 
 
<body> 
 <main> 
  <h1>My first Page</h1> 
  <p>This is a basic web page.</p> 
 </main> 
</body> 
</html> 
 
3.4 CSS Comments 
 
CSS comments are specific lines within your code that the compiler 
intentionally ignores, ensuring they are not executed. The fundamental 
objective of incorporating comments is to enhance the readability and 
comprehensibility of your code, making it more user-friendly for 
fellow developers. This practice is not only beneficial for team 
collaborations but also important for individual coders who revisit their 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

146 

 

code after a certain period. Remember, well-commented code is a 
hallmark of professional web development. 
Syntax: 
/* content */ 
Comments can be single-line or multi-line. The /* */ comment syntax 
can be used for both single and multiline comments. We may use <!– –
> syntax for hiding in CSS for older browsers, but this is no longer 
recommended for use. 
Adding comments to the code is a good practice that can help to 
understand the code if someone reads the code or if it is reviewed later. 
Note: The outputs are the same because comments are ignored by the 
browser and are not interpreted. 
Examples of CSS Comments 
Example 1: This example describes the single-line comment. 
<!DOCTYPE html> 
<html> 
<head> 
<style> 
        h1 { 
            color: green; 
        } 
        /* Single line comment */ 
</style> 
</head> 
<body> 
<h1>IFT 203 Class</h1> 
<p> A Computer Science portal for NOUN </p> 
</body> 
</html> 
Example 2: This example describes the multi-line comment.  
<!DOCTYPE html> 
<html> 
<head> 
<style> 
    h1 { 
        color: green; 
    } 
    /* This is a multiline 
           comment */ 
</style> 
</head> 
<body> 
<h1>IFT 203 Class</h1> 
<p> A Computer Science portal for NOUN </p> 
</body> 
</html> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

147 

 

3.5 CSS Colors 
 
CSS Colors are an essential part of web design, providing the ability to 
bring your HTML elements to life. This feature allows developers to 
set the color of various HTML elements, including font color, 
background color, and more. 
 
There are several ways to define the color of an element in CSS: 
Built-In Color: These are a set of predefined colors which are used by 
their names. For example: red, blue, green etc. 
 
RGB Format: The RGB (Red, Green, Blue) format is used to define the 
color of an HTML element by specifying the R, G, and B values range 
between 0 to 255. 
 
RGBA Format: The RGBA format is similar to the RGB, but it 
includes an Alpha component that specifies the transparency of 
elements. 
 
Hexadecimal Notation: The hexadecimal notation begins with a # 
symbol followed by 6 characters each ranging from 0 to F. 
 
HSL: HSL stands for Hue, Saturation, and Lightness respectively. This 
format uses the cylindrical coordinate system. 
HSLA: The HSLA color property is similar to the HSL property, but it 
includes an Alpha component that specifies the transparency of 
elements. 
By understanding and utilizing these different methods, you can create 
vibrant and dynamic web pages that captivate your audience. Let’s 
dive in and explore the CSS Colors! 
Built-In Color: These are a set of predefined colors which are used by 
its name. For example: red, blue, green etc. 
Syntax: 
h1 { 
    color: color-name; 
} 
Example: 
<!DOCTYPE html> 
<html> 
 
<head> 
<title>CSS color property</title> 
<style> 
        h1 { 
            color: green; 
            text-align: center; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

148 

 

        } 
</style> 
</head> 
 
<body> 
<h1> 
        IFT 203 class 
</h1> 
</body> 
 
</html> 
RGB Format: The RGB(Red, Green, Blue) format is used to define the 
color of an HTML element by specifying the R, G, B values range 
between 0 to 255. For example: RGB value of Red color is (255, 0, 0), 
Green color is (0, 255, 0), Blue color is (0, 0, 255) etc. 
Syntax: 
h1 { 
    color: rgb(R, G, B); 
} 
Example: 
<!DOCTYPE html> 
<html> 
 
<head> 
<title>CSS color property</title> 
<style> 
        h1 { 
            color: rgb(0, 153, 0); 
            text-align: center; 
        } 
</style> 
</head> 
 
<body> 
<h1> 
        IFT 2023 class 
</h1> 
</body> 
</html> 
RGBA Format: The RGBA format is similar to the RGB, but the 
difference is RGBA contains A (Alpha) which specifies the 
transparency of elements. The value of alpha lies between 0.0 to 1.0 
where 0.0. represents fully transparent and 1.0 represents not 
transparent. 
Syntax: 
h1 { 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

149 

 

 
    color:rgba(R, G, B, A); 
} 
Example: 
<!DOCTYPE html> 
<html> 
 
<head> 
<title>CSS RGBA color property</title> 
<style> 
        h1 { 
            color: rgba(0, 153, 0, 0.5); 
            text-align: center; 
        } 
</style> 
</head> 
 
<body> 
<h1> 
        IFT 203 Class 
</h1> 
</body> 
 
</html> 
Hexadecimal Notation: The hexadecimal notation begins with # 
symbol followed by 6 characters each ranging from 0 to F. For 
example: Red #FF0000, Green #00FF00, Blue #0000FF etc. 
Syntax: 
h1 { 
 
    color:#(0-F)(0-F)(0-F)(0-F)(0-F)(0-F); 
} 
Example: 
<!DOCTYPE html> 
<html> 
 
<head> 
<title>CSS hex property</title> 
<style> 
        h1 { 
            color: #009900; 
            text-align: center; 
        } 
</style> 
</head> 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

150 

 

<body> 
<h1> 
        IFT 203 class 
</h1> 
</body> 
 
</html> 
HSL: HSL stands for Hue, Saturation, and Lightness respectively. This 
format uses the cylindrical coordinate system. 
Hue: Hue is the degree of the color wheel. Its value lies between 0 to 
360 where 0 represents red, 120 represents green and 240 represents 
blue color. 
Saturation: It takes a percentage value, where 100% represents 
completely saturated, while 0% represents completely unsaturated 
(gray). 
Lightness: It takes percentage value, where 100% represents white, 
while 0% represents black. 
Syntax: 
h1 { 
 
   color:hsl(H, S, L); 
} 
Example: 
<!DOCTYPE html> 
<html> 
 
<head> 
<title>CSS hsl color property</title> 
<style> 
        h1 { 
            color: hsl(120, 100%, 30%); 
            text-align: center; 
        } 
</style> 
</head> 
 
<body> 
<h1> 
        IFT 203 Class 
</h1> 
</body> 
 
</html> 
HSLA: 
The HSLA color property is similar to HSL property, but the 
difference is HSLA contains A (Alpha) which specifies the 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

151 

 

transparency of elements. The value of alpha lies between 0.0 to 1.0 
where 0.0. represents fully transparent and 1.0 represents not 
transparent. 
Syntax: 
h1 { 
    color:hsla(H, S, L, A); 
} 
Example: 
<!DOCTYPE html> 
<html> 
 
<head> 
<title>CSS hsla color property</title> 
<style> 
        h1 { 
            color: hsla(120, 100%, 50%, 0.50); 
            text-align: center; 
        } 
</style> 
</head> 
 
<body> 
<h1> 
        IFT 203 class 
</h1> 
</body> 
 
</html> 
 
3.6 CSS Borders 
 
CSS borders are essential elements in websites, representing the edges 
of various components and elements. CSS Borders refer to the lines 
that surround elements, defining their edges. Borders can be styled, 
colored, and sized using CSS properties such as border style, border 
color, border width, and border radius. borders can be styled with the 
top border, the right border, the bottom border, and the left border.  
 
Common Border Styles 
The border-style property specifies the type of border. None of the 
other border properties will work without setting the border style.  
Following are the types of borders: 
Dotted: Creates a series of dots. 
Dashed: Forms a dashed line. 
Solid: Produces a continuous line. 
Double: Renders two parallel lines. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

152 

 

Groove and Ridge: Create 3D grooved and ridged effects. 
Inset and Outset: Add 3D inset and outset borders. 
None: Removes the border. 
Hidden: Hides the border. 
Examples of CSS border Style 
In this example we are going to use CSS border-style property. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
p.dotted { 
            border-style: dotted; 
        } 
 
p.dashed { 
            border-style: dashed; 
        } 
 
p.solid { 
            border-style: solid; 
        } 
 
p.double { 
            border-style: double; 
        } 
</style> 
</head> 
 
<body> 
<h2>The border-style Property</h2> 
 
<p>IFT 203 Class</p> 
 
<p class="dotted">A dotted border.</p> 
 
<p class="dashed">A dashed border.</p> 
 
<p class="solid">A solid border.</p> 
 
<p class="double">A double border.</p> 
 
</body> 
 
</html> 
Explanation: 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

153 

 

Here we defines paragraph elements with different border styles: 
dotted, dashed, solid, and double. 
Each paragraph demonstrates a distinct border style applied through 
the border-style property. 
CSS classes are used to assign specific border styles to paragraphs, 
such as .dotted, .dashed, .solid, and .double. 
When rendered, each paragraph showcases its designated border style, 
enhancing visual presentation. 
CSS Border Width 
Border width sets the width of the border. The width of the border can 
be in px, pt, cm or thin, medium, and thick. 
Example of Border Width 
Here is the basic example of using CSS border width property. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
        p { 
            border-style: solid; 
            border-width: 8px; 
        } 
</style> 
</head> 
 
<body> 
<p> 
        IFT 203 Class 
</p> 
<p> 
        Border properties 
</p> 
</body> 
 
</html> 
Explanation: 
In this example we contains two paragraphs styled with a solid border 
using CSS. 
The border width for both paragraphs is set to 8 pixels, defined by the 
border-width property. 
Each paragraph displays a solid border surrounding its content, 
enhancing visual separation. 
The border width can be adjusted to modify the thickness of the border 
as desired. 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

154 

 

CSS Border Color 
This property is used to set the color of the border. Color can be set 
using the color name, hex value, or RGB value. If the color is not 
specified border inherits the color of the element itself. 
Example of CSS Border Color 
Here we are implementing above explained border color property. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
        p { 
            border-style: solid; 
            border-color: red 
        } 
</style> 
</head> 
 
<body> 
<p> 
        IFT 203 Class 
</p> 
<p> 
        Border properties:color 
</p> 
</body> 
 
</html> 
Explanation: 
Here we includes two paragraphs styled with a solid border. 
The border color for both paragraphs is set to red using the border-
color property. 
Each paragraph displays a solid red border around its content, 
enhancing visual distinction. 
Border color can be customized by specifying different color values. 
CSS Border individual sides: 
Using border property, we can provide width, style, and color to all the 
borders separately for that we have to give some values to all sides of 
the border. 
CSS Border individual sides Syntax:  
border-top-style : dotted; 
border-bottom-width: thick; 
border-right-color: green; 
CSS Border individual sides Example: 
In this example, we set border-top-style as dotted in h2. 
<!DOCTYPE html> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

155 

 

<html> 
 
<head> 
<style> 
        h2 { 
            border-top-style: dotted; 
        } 
</style> 
</head> 
 
<body> 
<h2>Welcome to IFT 203 Class </h2> 
</body> 
 
</html> 
Explanation: 
In thw above example we contains a single <h2> heading styled with a 
dotted border on the top. 
The border style for the top of the heading is set using the border-top-
style property. 
This results in the top border of the heading being displayed as a dotted 
line. 
Using CSS, borders can be styled in various ways to enhance the 
appearance of elements. 
 
Border radius property 
The CSS border-radius property rounds the corners of an element’s 
border, creating smoother edges, with values specifying the curvature 
radius. 
Border radius property Syntax: 
border-radius: value; 
Example of Border radius property 
Here is the basic example of using border-radius property. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
        h1 { 
            border-style: solid; 
            text-align: center; 
            background: green; 
            border-radius: 20px; 
        } 
</style> 
</head> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

156 

 

<body> 
<h1> IFT 203 Class </h1> 
</body> 
</html> 
Explanation: 
In the above example we contains a single <h1> heading styled with a 
solid border. 
The text inside the heading is centered horizontally using the text-align 
property. 
The heading has a green background color and rounded corners 
achieved with border-radius. 
This creates a visually appealing header element with a solid border 
and rounded corners. 
CSS Links 
A link is a connection from one web page to another web page. CSS 
property can be used to style the links in various different ways. 
States of Link: Before discussing CSS properties, it is important to 
know the states of a link. Links can exist in different states and they 
can be styled using pseudo-classes. 
There are four states of links given below:  
a:link => This is a normal, unvisited link. 
a:visited => This is a link visited by user at least once 
a:hover => This is a link when mouse hovers over it 
a:active => This is a link that is just clicked. 
Syntax:  
a:link { 
    color:color_name; 
} 
color_name can be given in any format like color name (green), HEX 
value (#5570f0) or RGB value rgb(25, 255, 2). There is another state 
‘a:focus’ which is used to focused when a user uses the tab key to 
navigate through the links.  
The default value of links:  
By default the links created are underlined. 
When the mouse is hovered above a link, it changes to a hand icon. 
Normal/unvisited links are blue. 
Visited links are colored purple. 
Active links are colored red. 
When a link is focused, it has an outline around it. 
Example: This example shows the basic use of links in CSS. 
<!DOCTYPE html> 
<html> 
 
<head> 
<title>CSS links</title> 
<style> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

157 

 

        p { 
            font-size: 25px; 
            text-align: center; 
        } 
</style> 
</head> 
 
<body> 
<p> 
<a href="https://www.noun.edu.ng/"> 
            IFT 203 Class Simple Link 
</a> 
</p> 
</body> 
 
</html> 
CSS Properties of Links: Some basic CSS properties of links are given 
below:  
color 
font-family 
text-decoration 
background-color 
color: This CSS property is used to change the color of the link text.  
Syntax: 
a { 
    color: color_name; 
} 
Example: This example shows the use of the color property in links. 
<!DOCTYPE html> 
<html> 
 
<head> 
<title>Link color property</title> 
<style> 
        p { 
            font-size: 20px; 
            text-align: center; 
        } 
 
        /*unvisited link will appear green*/ 
a:link { 
            color: red; 
        } 
 
        /*visited link will appear blue*/ 
a:visited { 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

158 

 

            color: blue; 
        } 
 
        /*when mouse hovers over link it will appear orange*/ 
a:hover { 
            color: orange; 
        } 
 
        /*when the link is clicked, it will appear black*/ 
a:active { 
            color: black; 
        } 
</style> 
</head> 
 
<body> 
<p> 
<a href="https://www.noun.edu.ng/"> 
            IFT 203 Class 
</a> 
        This link will change colours with different states. 
</p> 
</body> 
 
</html> 
font-family: This property is used to change the font type of a link 
using font-family property.  
Syntax:  
a { 
    font-family: "family name"; 
} 
Example: This example shows the use of the font-family property in 
links. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
        /*Initial link font family arial*/ 
        a { 
            font-family: Arial; 
        } 
 
        p { 
            font-size: 30px; 
            text-align: center; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

159 

 

        } 
 
        /*unvisited link font family*/ 
a:link { 
            color: Arial; 
        } 
 
        /*visited link font family*/ 
a:visited { 
            font-family: Arial; 
        } 
 
        /*when mouse hovers over it will change to times new roman*/ 
a:hover { 
            font-family: Times new roman; 
        } 
 
        /*when the link is clicked, it will changed to Comic sans ms*/ 
a:active { 
            font-family: Comic Sans MS; 
        } 
</style> 
</head> 
 
<body> 
<p> 
<a href="https://www.noun.edu.ng/" id="link"> 
            IFT 203 Class 
</a> 
        a Computer Science Portal for Geeks. 
</p> 
</body> 
 
</html> 
Text-Decoration: This property is basically used to remove/add 
underlines from/to a link.  
Syntax:  
a { 
    text-decoration: none; 
} 
Example: This example shows the use of the text-decoration property 
in links. 
Text-Decoration: This property is basically used to remove/add 
underlines from/to a link.  
Syntax:  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

160 

 

a { 
    text-decoration: none; 
} 
Example: This example shows the use of the text-decoration property 
in links. 
<!DOCTYPE html> 
<html> 
 
<head> 
<title>Text decoration in link</title> 
<style> 
        /*Set the font size for better visibility*/ 
        p { 
            font-size: 2rem; 
        } 
 
        /*Removing underline using text-decoration*/ 
        a { 
            text-decoration: none; 
        } 
 
        /*underline can be added using 
        text-decoration:underline; 
        */ 
</style> 
</head> 
 
<body> 
<p> 
<a href="https://www.noun.edu.ng/" id="link"> 
            IFT 203 Class 
</a> 
        a Computer Science Portal for Geeks. 
</p> 
</body> 
 
</html> 
background-color: This property is used to set the background color of 
the link.  
Syntax:  
a { 
    background-color: color_name; 
} 
Example: This example shows the use of the background-color 
property in links. 
<!DOCTYPE html> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

161 

 

<html> 
 
<head> 
<title>background color</title> 
<style> 
        /*Setting font size for better visibility*/ 
        p { 
            font-size: 2rem; 
        } 
 
        /*Designing unvisited link button*/ 
a:link { 
            background-color: powderblue; 
            color: green; 
            padding: 5px 5px; 
            text-decoration: none; 
            display: inline-block; 
        } 
 
        /*Designing link button when mouse cursor hovers over it*/ 
a:hover { 
            background-color: green; 
            color: white; 
            padding: 5px 5px; 
            text-align: center; 
            text-decoration: none; 
            display: inline-block; 
        } 
</style> 
</head> 
 
<body> 
<p> 
<a href="https://www.IFT 203 Class.org/" id="link"> 
            IFT 203 Class 
</a> 
        a Computer Science Portal for Geeks. 
</p> 
</body> 
 
</html> 
CSS Link Button: CSS links can also be styled using buttons/boxes. 
The following example shows how CSS links can be designed as 
buttons.  
Example: This example shows the use of links as a button. 
<!DOCTYPE html> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

162 

 

<html> 
 
<head> 
<title>Link button</title> 
<style> 
        /*Setting font size for better visibility*/ 
        p { 
            font-size: 2rem; 
        } 
 
        a { 
            background-color: green; 
            color: white; 
            padding: 5px 5px; 
            border-radius: 5px; 
            text-align: center; 
            text-decoration: none; 
            display: inline-block; 
        } 
</style> 
</head> 
 
<body> 
<p> 
<a href="https://www.noun.edu.ng/" id="link"> 
            IFT 203 Class 
</a> 
        a Computer Science Portal for Geeks. 
</p> 
</body> 
 
</html> 
 
3.7 CSS Lists 
 
The List  in CSS specifies the listing of the contents or items in a 
particular manner i.e., it can either be organized orderly or unorder 
way, which helps to make a clean webpage. It can be used to arrange 
the huge with a variety of content as they are flexible and easy to 
manage. The default style for the list is borderless. 
 
The list can be categorized into 2 types: 
Unordered List: In unordered lists, the list items are marked with 
bullets i.e. small black circles by default. 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

163 

 

Ordered List: In ordered lists, the list items are marked with numbers 
and an alphabet. 
 
We have the following CSS lists properties, which can be used to 
control the CSS lists: 
list-style-type: This property is used to specify the appearance (such as 
disc, character, or custom counter style) of the list item marker. 
list-style-image: This property is used to set the images that will be 
used as the list item marker. 
 
list-style-position: It specifies the position of the marker box with 
respect to the principal block box. 
 
list-style: This property is used to set the list style. 
Now, we will learn more about these properties with examples. 
 
List Item Marker  
This property specifies the type of item marker i.e. unordered list or 
ordered. The list-style-type property specifies the appearance of the list 
item marker (such as a disc, character, or custom counter style) of a list 
item element. Its default value is a disc. 
 
Syntax:  
list-style-type: value; 
The following value can be used: 

CSS List Style Type Description 

none No marker or bullet is displayed. 

circle 
Default marker for unordered lists, 
displays a hollow circle. 

decimal 
Default marker for ordered lists, displays 
decimal numbers (1, 2, 3, etc.). 

decimal-leading-zero 
Displays decimal numbers with leading 
zeroes (01, 02, 03, etc.). 

lower-roman 
Displays lowercase Roman numerals (i, 
ii, iii, etc.) for ordered lists. 

upper-roman 
Displays uppercase Roman numerals (I, 
II, III, etc.) for ordered lists. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

164 

 

CSS List Style Type Description 

lower-alpha 
Displays lowercase alphabetical 
characters (a, b, c, etc.) for ordered lists. 

upper-alpha 
Displays uppercase alphabetical 
characters (A, B, C, etc.) for ordered 
lists. 

square 
Displays filled square markers for 
unordered lists. 

CSS Lists Examples 
 
Example 1: This example describes the CSS List with the various list-
style-type where the values are set to square & lower-alpha. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
ul.a { 
            list-style-type: square; 
        } 
 
        ol.c { 
            list-style-type: lower-alpha; 
        } 
</style> 
</head> 
 
<body> 
<h2> 
        IFT 203 Class 
</h2> 
<p> Unordered lists </p> 
<ul class="a"> 
<li>one</li> 
<li>two</li> 
<li>three</li> 
</ul> 
<ul class="b"> 
<li>one</li> 
<li>two</li> 
<li>three</li> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

165 

 

</ul> 
<p> Ordered Lists </p> 
<ol class="c"> 
<li>one</li> 
<li>two</li> 
<li>three</li> 
</ol> 
<ol class="d"> 
<li>one</li> 
<li>two</li> 
<li>three</li> 
</ol> 
</body> 
 
</html> 
Example 2: This example describes the CSS List with the various list-
style-image where the values are set to url of the image. 
<!DOCTYPE html> 
<html> 
 
<head> 
<title> CSS list-style-image Property </title> 
<style> 
        ul { 
            list-style-image:  
url("https://contribute.noun.edu.ng/wp-content/uploads/listitem-
1.png"); 
        } 
</style> 
</head> 
 
<body> 
<h1> 
        IFT 203 Class 
</h1> 
<p> Unordered lists </p> 
<ul> 
<li>1</li> 
<li>2</li> 
<li>3</li> 
</ul> 
</body> 
 
</html> 
Styling Lists: The list can be formatted in CSS. Different colors, 
borders, backgrounds, and paddings can be set for the lists.  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

166 

 

Example 3: This example describes the CSS List where the various 
styling properties are applied to the element. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
ul.a { 
            list-style: square; 
            background: pink; 
            padding: 20px; 
        } 
</style> 
</head> 
 
<body> 
<h2> 
        IFT 203 Class 
</h2> 
<p> Unordered lists </p> 
<ul class="a"> 
<li>one</li> 
<li>two</li> 
<li>three</li> 
</ul> 
</body> 
 
</html> 
 
3.8 CSS Tables 
 
A table in CSS is used to apply the various styling properties to 
the HTML Table elements to arrange the data in rows and columns, or 
possibly in a more complex structure in a properly organized manner. 
Tables are widely used in communication, research, and data analysis. 
The table-layout property in CSS can be utilized to display the layout 
of the table. This property is basically used to sets the algorithm that is 
used to layout <table>cells, rows, and columns. 
Properties: 
Border: It is used for specifying borders in the table. 
Syntax: 
border: table_width table_color; 
Example 1: This example describes the CSS Table to apply the border 
property. 
<!DOCTYPE html> 
<html> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

167 

 

<head> 
<style> 
    body { 
        text-align: left; 
    } 
 
    h1 { 
        color: green; 
    } 
 
    table, 
    th, 
    td { 
 
        /* Styling the border. */ 
        border: 1.5px solid blue; 
    } 
</style> 
</head> 
 
<body> 
<h1> IFT 203 Class </h1> 
<h2>Add border to table:</h2> 
<table> 
<tr> 
<th>Roll No.</th> 
<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td>A_B_C</td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
</body> 
 
</html> 
Border Collapse: The border-collapse property tells us whether the 
browser should control the appearance of the adjacent borders that 
touch each other or whether each cell should maintain its style. 
Syntax: 
border-collapse: collapse/separate; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

168 

 

Example 2: This example describes the CSS Table by applying the 
border-collapse property. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
    body { 
        text-align: left; 
    } 
 
    h1 { 
        color: green; 
    } 
 
    table.one { 
 
        /* Styling border collapse for table one. */ 
        border-collapse: collapse; 
    } 
 
    table.two { 
 
        /* Styling border separate for table two. */ 
        border-collapse: separate; 
    } 
 
    table, 
    td, 
    th { 
        border: 1.5px solid blue; 
    } 
</style> 
</head> 
 
<body> 
<h1>IFT 203 Class</h1> 
<h2>borders collapsed:</h2> 
<table class="one"> 
<tr> 
<th>Roll Number</th> 
<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td>A_B_C</td> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

169 

 

</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
<br> 
<br> 
<h2>borders separated:</h2> 
<table class="two"> 
<tr> 
<th>Roll Number</th> 
<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td>A_B_C</td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
</body> 
 
</html> 
Border Spacing: This property specifies the space between the borders 
of the adjacent cells. 
Syntax: 
border-spacing: value; 
Example 3: This example describes the CSS Table by applying the 
border-spacing property. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
    body { 
        text-align: left; 
    } 
 
    h1 { 
        color: green; 
    } 
 
    table.one { 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

170 

 

        border-collapse: separate; 
 
        /* Styling the border-spacing  
               between adjacent cells. */ 
        border-spacing: 10px; 
    } 
 
    table.two { 
        border-collapse: separate; 
 
        /* Styling the border-spacing  
              between adjacent cells. */ 
        border-spacing: 10px 30px; 
    } 
 
    table, 
    td, 
    th { 
        border: 1.5px solid blue; 
    } 
</style> 
</head> 
 
<body> 
<h1> IFT 203 Class </h1> 
<h2>border spacing:</h2> 
<table class="one"> 
<tr> 
<th>Roll Number</th> 
<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td>A_B_C</td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
<br> 
<br> 
<h2>border spacing:</h2> 
<table class="two"> 
<tr> 
<th>Roll Number</th> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

171 

 

<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td>A_B_C</td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
</body> 
 
</html> 
Caption Side: Caption side property is used for controlling the 
placement of caption in the table. By default, captions are placed above 
the table. 
Syntax: 
caption-side: top/bottom; 
Example 4: This example describes the CSS Table by applying the 
caption-side property to control the placement of the Table caption. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
    body { 
        text-align: left; 
    } 
 
    h1 { 
        color: green; 
    } 
 
    table.one { 
        border-collapse: separate; 
        border-spacing: 10px; 
 
        /* Controlling the placement of caption. */ 
        caption-side: top; 
    } 
 
    table.two { 
        border-collapse: separate; 
        border-spacing: 10px; 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

172 

 

        /* Controlling the placement of caption. */ 
        caption-side: bottom; 
    } 
 
    table, 
    td, 
    th { 
        border: 1.5px solid blue; 
    } 
</style> 
</head> 
 
<body> 
<h1> IFT 203 Class</h1> 
<h2>Caption on top:</h2> 
<table class="one"> 
<caption>Caption at the top of the table.</caption> 
<tr> 
<th>Roll Number</th> 
<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td>A_B_C</td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
<br> 
<br> 
<h2>Caption at bottom:</h2> 
<table class="two"> 
<caption> Caption at the bottom of the table </caption> 
<tr> 
<th>Roll Number</th> 
<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td>A_B_C</td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

173 

 

</tr> 
</table> 
</body> 
 
</html> 
Empty cells: This property specifies whether or not to display borders 
and background on empty cells in a table. 
Syntax: 
empty-cells:show/hide; 
Example 5: This example describes the CSS Table by applying the 
empty-cell property that specifies whether to display the borders or not 
in the empty cells in a table. 
<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
    body { 
        text-align: left; 
    } 
 
    h1 { 
        color: green; 
    } 
 
    table.one { 
        border-collapse: separate; 
        border-spacing: 10px; 
 
        /* Hiding empty cells border */ 
        empty-cells: hide; 
    } 
 
    table.two { 
        border-collapse: separate; 
        border-spacing: 10px; 
 
        /* Display empty cells border */ 
        empty-cells: show; 
    } 
 
    table, 
    td, 
    th { 
        border: 1.5px solid blue; 
    } 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

174 

 

</style> 
</head> 
 
<body> 
<h1> IFT 203 Class</h1> 
<h2>empty cells hide:</h2> 
<table class="one"> 
<tr> 
<th>Roll Number</th> 
<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td></td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
<br> 
<br> 
<h2>empty cells show:</h2> 
<table class="two"> 
<tr> 
<th>Roll Number</th> 
<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td></td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
</body> 
 
</html> 
Table layout: The table layout property is used to set up the layout 
algorithm used for the table. 
Syntax: 
table-layout:auto/fixed; 
Example 6: This example describes the CSS Table by applying the 
table layout property. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

175 

 

<!DOCTYPE html> 
<html> 
 
<head> 
<style> 
    body { 
        text-align: left; 
    } 
 
    h1 { 
        color: green; 
    } 
 
    table.one { 
        width: 80px border-collapse: separate; 
        border-spacing: 10px; 
 
        /* Layout of table is auto. */ 
        table-layout: auto; 
    } 
 
    table.two { 
        width: 80px border-collapse: separate; 
        border-spacing: 10px; 
        /* Layout of table is fixed. */ 
        table-layout: fixed; 
    } 
 
    table, 
    td, 
    th { 
        border: 1.5px solid blue; 
        width: 80px; 
    } 
</style> 
</head> 
 
<body> 
<h1> IFT 203 Class</h1> 
<h2>auto table layout:</h2> 
<table class="one"> 
<tr> 
<th>Roll Number</th> 
<th>Name</th> 
</tr> 
<tr> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

176 

 

<td>1</td> 
<td>A_B_C_D_E_F_G_H_I_J_K_L_M_N_O_P</td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
<br> 
<br> 
<h2>fixed table layout:</h2> 
<table class="two"> 
<tr> 
<th>Roll Number</th> 
<th>Name</th> 
</tr> 
<tr> 
<td>1</td> 
<td>A_B_C_D_E_F_G_H_I_J_K_L_M_N_O_P</td> 
</tr> 
<tr> 
<td>2</td> 
<td>X_Y_Z</td> 
</tr> 
</table> 
</body> 
 
</html> 
 
 
Self-Assessment Exercise(s) 
 
(1)  Which of the following is the correct syntax to link an external 

CSS file in an HTML document? 
A.  <link rel="stylesheet" type="text/css" href="styles.css"> 
B.  <stylesheet>styles.css</stylesheet> 
C.  <css link="styles.css"> 
D.  <style src="styles.css"></style> 
Answer: A. <link rel="stylesheet" type="text/css" href="styles.css"> 
 
(2)  What does the 'C' in CSS stand for? 
A.  Color 
B.  Code 
C.  Cascading 
D.  Common 
Answer: C. Cascading 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

177 

 

(3)  Which property is used to change the background color of an 
element in CSS? 

A.  color 
B.  background 
C.  bgcolor 
D.  background-color 
Answer: D. background-color 
 
(4)  How can you make a list that lists its items with squares in 

CSS? 
A.  list-type: square; 
B.  list-style-type: square; 
C.  list-style: square; 
D.  list-square: true; 
Answer: B. list-style-type: square; 
 
(5)  Which of the following selectors is used to apply a style to a 

group of elements with the same class in CSS? 
A.  #classname 
B.  .classname 
C.  classname 
D.  *classname 
Answer: B. .classname 
 
Conclusion 
 
This unit has equipped you with the foundational knowledge and skills 
necessary to effectively style and layout web pages. You have learned 
how to use selectors, properties, and values to apply various styles and 
understand the importance of the cascade, inheritance, and specificity 
in resolving conflicts between styles. By mastering these concepts, you 
are now able to create visually appealing and responsive designs that 
enhance the user experience. As you continue to explore more 
advanced CSS techniques and practices, this foundational 
understanding will serve as a crucial building block in your journey 
toward becoming a proficient web developer. 
 
 
  
            4.0 Summary 
 
 
Introduction to CSS unit provides an essential overview of CSS, a key 
technology for styling web pages. It begins with the fundamental 
concept of separating content (HTML) from presentation (CSS), 
highlighting the benefits of this approach, such as easier maintenance 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

178 

 

and greater flexibility. The unit covers basic syntax, including 
selectors, properties, and values, and demonstrates how to link CSS to 
HTML documents. It also introduces different types of selectors and 
explains the cascading and inheritance principles that govern how 
styles are applied. Through examples and exercises, learners gain 
practical skills in creating visually appealing and consistent web pages. 
 
 
 7    
               5.0    References/Further Readings 
 
Lie, H. W., & Bos, B. (2005). Cascading style sheets: Designing for 

the web. Addison-Wesley Professional. 
 
Schengili-Roberts, K. (2004). Core CSS: Cascading style sheets. 

Prentice Hall Professional. 
 
Bartlett, J. (2022). Introduction to Cascading Style Sheets. 

In Programming for Absolute Beginners: Using the JavaScript 
Programming Language (pp. 91-103). Berkeley, CA: Apress. 

 
Wilson, D., Hassan, S. U., Aljohani, N. R., Visvizi, A., & Nawaz, R. 

(2023). Demonstrating and negotiating the adoption of web 
design technologies: Cascading Style Sheets and the CSS Zen 
Garden. Internet Histories, 7(1), 27-46. 

 
Donahoe, L., & Hartl, M. (2022). Learn Enough HTML, CSS and 

Layout to be Dangerous: An Introduction to Modern Website 
Creation and Templating Systems. Addison-Wesley 
Professional. 

 
Casabona, J. (2020). HTML and CSS: Visual QuickStart Guide. 

Peachpit Press. 
 
 
 
 
 
 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

179 

 

Unit 2  Styling with Cascading Style Sheet 
 
Contents 
 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 
3.0 Main Content 

3.1 CSS selectors and style rules 
3.2 Margins and padding 
3.3 Positioning HTML elements with CSS 
3.4 CSS media queries and responsive design 
3.5 Alignment and Text Transformations 

4.0 Summary 
5.0 References/Further Reading 
 
 
            
           1.0      Introduction 
 
CSS is a fundamental skill in web development that transforms basic 
HTML documents into visually appealing and well-structured web 
pages. CSS is a style sheet language that allows developers to control 
the layout, design, and presentation of web content. It works by 
applying styles to HTML elements using a variety of selectors and 
properties, enabling precise control over aspects such as colors, fonts, 
spacing, and overall page layout. By separating content (HTML) from 
presentation (CSS), developers can maintain cleaner and more 
manageable code, enhance the user experience, and ensure a consistent 
look and feel across multiple web pages.This unit on Styling with CSS 
will cover essential concepts and techniques, starting with the basics of 
including CSS in HTML documents through inline, internal, and 
external styles. Learners will explore the various types of selectors, 
including class, ID, and pseudo-selectors, to target specific elements 
for styling. Key CSS properties for layout control, such as display, 
position, and float, will be examined, along with techniques for 
creating responsive designs that adapt to different screen sizes and 
devices. By the end of this unit, students will be equipped with the 
knowledge and skills to create well-designed, user-friendly web pages 
that leverage the full power of CSS. 
 
 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

180 

 

 
 
 
            2.0      Intended Learning Outcomes (ILOs) 
 
By the end of this unit, you will be able to: 
 
• discuss the CSS selectors and style rules 
• explain margins and padding 
• discuss Positioning HTML elements with CSS 
• explain CSS media queries and responsive design 
• explain alignment and text transformations 

 
 
 3.0  Main Content 

 
3.1 CSS selectors and style rules 
 
The CSS standard defines selectors and style rules. The syntax is 
defined as follows: 
selector { property:value; } 
A selector can be one of a predefined identifier (, e.g., H1), a class 
name (e.g. .myclass), or an identifier (e.g. #myuniqueid). 
In CSS an identifier is supposed to be unique across all of the elements 
in a page (or window in our case) while a class can be assigned to 
several elements. 
For example, the following CSS file defines the size and color of the 
'h1' tag. 
h1 { color:red; font-size:48px; } 
CSS pseudo classes 
CSS pseudo-classes are used to qualify attributes of selectors. For 
example, you can select a visited link in HTML and the style is 
different. 
a:visited { color:red; } 
2. Exercise: Style an HTML page with CSS 
In the following you create a local html page and style it with CSS. 
Create a new directory and create the following file called 'styles.css'. 
/* this is a comment */ 
/* we style only the h1 element*/ 
 
h1 { 
    border-style:solid none solid solid; 
color:red; 
} 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

181 

 

In the same directory define the following HTML file. This file defines 
that it uses the 'styles.css' style sheet file from the same same directory. 
<!DOCTYPE html> 
<html> 
<head> 
<title>An HTML5 Document</title> 
<link href="styles.css" rel="stylesheet" type="text/css"> 
</head> 
<body> 
<h1>Your first HTML5 page</h1> 
<p>This is a <a href="http://www.vogella.com">link</a> to another 
webpage</p> 
<!-- this is a comment --> 
</body> 
</html> 
3. HTML container via id and class 
HTML allows to define sections via 'div' containers. These 'div' 
containers can be used to style parts of the HTML document 
differently. For this purpose you can identify the div containers 
via id or class attributes. 
While id and class generate the same output, an id must be unique in 
the HTML document while the class attribute can be defined for 
several HTML elements in a page. CSS allows to style these elements 
via special selectors. 
The following rule applies: 

Styling div containers 

Definition  CSS selection rule 

<div id="myid">Content</div> #myid {css rules….}  

<div class="myclass">Content</div> .myclass {css rules…} 

The following example demonstrate both usages. Create the 
file stylesdiv.css 
/* this is a comment */ 
/* we style only the h1 element*/ 
 
#number1 { 
color:red; 
} 
 
#number2 { 
color:blue; 
} 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

182 

 

.class1 { 
    font-weight: bold; 
} 
 
.class2{ 
    font-weight: normal; 
    color: green; 
} 
Create the following HTML file to use the style sheet. 
<!DOCTYPE html> 
<html> 
<head> 
<title>An HTML5 Document</title> 
<link href="stylesdiv.css" rel="stylesheet" type="text/css"> 
</head> 
<body> 
<div id="number1"> Some Text </div> 
<div id="number2"> Another Text</div> 
<div class="class1"> Styling with classes </div> 
<div class="class2"> Another class </div> 
</body> 
</html> 
You can also select by position in the HTML document. For example 
'td a' only selects links which are within a table row. 
You can also use other attributes for example the following will define 
certain styling for links which have been visited or over which the 
mouse hovers. They will identify if you have a link already visited or if 
the mouse hovers over a link and will change the display of the link 
accordingly. 
a:visited {color:grey} 
a:hover {text-decoraton:underline} 
CSS includes 
A CSS file can import other CSS files via the '@import' statement. It 
must be the first rule in the style sheet using the '@import' statement. 
@import "mystyle.css"; 
@import url("mystyle.css"); 
If you want to import a css file from a html file it is better to use the 
following statement: 
<link rel="stylesheet" href="include.css"> 
and not 
@import "mystyle.css"; 
 @import url("mystyle.css"); 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

183 

 

3.2 Margins and padding 
 
Margins 
A block element can be thought of as a box that contains something. 
This box has a border to other elements and you can influence the 
distance to other elements via the 'margin' and 'padding' settings. 
Margin defines the outer distance of other elements. You can set values 
for top, right, bottom, and left. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

You can define the margins for a box individually or combine them 
into one statement. 
body { 
    margin-top: 10px; 
    margin-right: 120px; 
    margin-bottom: 20px; 
    margin-left: 8px; 
} 
body { 
    margin: 10px 120px 20px 8px; 
} 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

184 

 

Padding 
Padding defines the inner distance of elements to the end of the box. 
<!DOCTYPE html> 
<html> 
<head> 
<title>Margin, padding test</title> 
<link href="styles.css" rel="stylesheet" type="text/css"> 
</head> 
 
<body> 
<p id="test">Your first HTML5 page</p> 
</body> 
</html> 
#test { 
    width: 200px; 
    height: 60px; 
    padding: 10px; 
    border: 5px dotted blue; 
    margin: 5px, 10px, 20px, 30px; 
} 
The total size of the HTML box is defined by the initial size of the box, 
plus the margins the padding, and a border, if defined. 
 
3.3 Positioning HTML elements with CSS 
 
CSS allows to setup of elements with fixed, related, and absolute 
positions. Relative is the standard and will change the distribution of 
the different text containers based on the available space. 
 
Frequently you want to make sure that you boxes stay on a specific 
place. You can use postion:absolute for this. A block element with this 
style will be removed from the normal flow of the HTML page and 
will have a fixed space. For example: 
<!DOCTYPE html> 
<html> 
<head> 
<title>An HTML5 Document</title> 
<style type="text/css"> 
#center { 
    position: absolute; 
    width: 200px; 
    left: 400px; 
    background-color: green; 
} 
#left { 
    position: absolute; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

185 

 

    width: 200px; 
    background-color: blue; 
    top:200px; 
} 
#right { 
    position: absolute; 
    background-color: red; 
    left: 200px; 
    width: 200px; 
} 
</style> 
</head> 
<body> 
<h1>HTML5 with CSS positioning</h1> 
<p id="center">Center fixed box</p> 
<p id="left">Left fixed box</p> 
<p id="right">Right fixed box</p> 
 
</body> 
</html> 
If you want to have a element always on a certain position you can use 
the fixed position and will not move even if you scroll down the 
HTML page. 
<!DOCTYPE html> 
<html> 
<head> 
<title>An HTML5 Document</title> 
<style type="text/css"> 
p.position_fixed { 
    position: fixed; 
    top: 200px; 
    right: 5px; 
} 
</style> 
</head> 
<body> 
<h1>HTML5 with CSS positioning</h1> 
<p class="position_fixed"><a 
href="http://www.twitter.com/vogella">Follow 
vogella on twitter</a></p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

186 

 

<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
<p>lots of information here</p> 
 
</body> 
</html> 
CSS-based layout 
You can use HTML div container and CSS to layout your webpage. 
Your example the following webpage uses div container. 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"> 
<html> 
<head> 
<title>This is a tile</title> 
<link href="styleslayout.css" rel="stylesheet" type="text/css"> 
</head> 
<body> 
<div id="header">Header Section</div> 
<div id="leftcol">Left Section</div> 
<div id="rightcol">Right Section</div> 
<div id="content">Content Section</div> 
<div id="footer">Footer Section</div> 
</body> 
</html> 
<style type ="text/css"> 
 
body { 
    margin: 0px; 
    padding: 0px; 
} 
 
#header { 
    background: #aba; 
    width: 100%; 
} 
 
#leftcol { 
    background: #aaa; 
    float: left; 
    width: 20%; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

187 

 

    height: 500px; 
} 
 
#rightcol { 
    background: #aaa; 
    float: right; 
    width: 20%; 
    height: 500px; 
} 
 
#content { 
    background: #eee; 
    float: left; 
    width: 59%; 
    height: 500px; 
} 
 
#footer { 
    background: #aba; 
    clear: both; 
    width: 100%; 
} 
</style> 
This result in the following layout. 
 
 
 
 
 
 
 
 
 
 
 
3.4 CSS media queries and responsive design 
 
Via CSS you can use media queries to define CSS settings based on 
certain criteria. A common use case is to have different CSS based 
styling for devices with only limited pixels and other designs for larger 
screens. 
 
For example the following CSS defines a fixed position for a search 
box. If the screen has a maximum width of 750 or less different styling 
is used. 
#searchfixed { 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

188 

 

    position: fixed; 
    top: 8px; 
    right: 200px; 
    z-index: 4; 
    width:200px; 
} 
 
#searchwrapper{ 
    width:100%; 
    height:40px; 
position:relative; 
} 
 
#search_field { 
    margin-left:40px; 
    height:20px; 
    width:150px; 
border:none; 
    background-color:#fcfcfc; 
    border-radius:5px; 
    -moz-border-radius:5px; 
    -webkit-border-radius:5px; 
    padding-left: 5px; 
} 
 
#search_button { 
position:absolute; 
    top:3px; 
    right:15px; 
} 
 
@media screen and (max-width: 750px) { 
 
    #topnav { 
        height: 80px; 
    } 
 
    #topnav ul { 
        width: 100%; 
    } 
 
    #logo { 
        top: 30px !important; 
    } 
 
    #searchfixed { 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

189 

 

        top: 45px !important; 
        left: 0; 
        right: auto !important; 
    } 
 
    #search_button { 
        right: 45px !important; 
    } 
 
    #search_field { 
        margin-left: 0.55em; 
    } 
 
    #container, #trainingcontainer { 
        margin: 90px auto !important; 
    } 
 
} 
Defining size 
The most consist way to define size is the unit 'em' which is a relative 
unit to the font-size. 1em is as large as the font size. You can use 1em 
for defining the space between words (word-spacing), or letters (letter-
spacing) or to define the line height (line height) of an HTML element. 
text-indent allows you to define the intent of the first line of a 
paragraph. text-indent: -1em put the first line a bit before the rest of the 
text. 
 
3.5 Alignment and Text transformations 
 
Via text-align, you can define how your content (not only text) should 
be aligned. text-transform allows to transform the text to upper, or 
lower case or to capitalize the first letter. 
text-transform:uppercase; 
text-transform:lowercase; 
text-transform:capitalize; 
 
text-align:left; 
text-align:right; 
text-align:center; 
text-align:justify; 
 
Versioning of CSS 
The versioning of css files is not mandatory, but it could be very useful 
to force the browser to load a changed css file instead of using the CSS 
caching. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

190 

 

To achieve this just add ?version=1.1 at the end of the css file name 
when referencing to the file. 
So instead of calling a css file like this: 
https://www.vogella.com/css/companyfooter.css 
you should replace it with 
https://www.vogella.com/css/companyfooter.css?version=1.1 
The wording after the '?' has no relevance and can be chosen freely. 
With this solution, your css changes are immediately visible and you 
do not need to refresh your browser with CTRL F5 until you see them. 
Additionally the name of the css file keeps the same which saves you a 
global search and replacement. 
 
CSS editor usage in Eclipse 
Eclipse has an integrated CSS editor which by default supports CSS2. 
To see the new CSS3 properties you must activate this feature. 
You can activate it per file, Dynamic Web Project or Static Web 
Project, but not for other types of Projects. It is also not available as a 
workspace-wide preference. 
First, just make sure you have installed the Web Package of Eclipse. 
Otherwise, you won't see the Web Content Settings in the Properties 
page. In Eclipse go to Help → Install New Software … → select your 
Eclipse release software site → select the Web Package → Press Next 
> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

191 

 

 
After the installation perform the following steps: 
Select a CSS file, Dynamic Web Project or Static Web Project and 
right-click on it 
Click on Properties 
Select the Web Content Settings 
Set the CSS Profile value to "CSS3: Cascading Style Sheets, level 3" 
Click the OK button. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This guide applies to Eclipse releases up to Mars. With Neon M6 the 
default CSS profile will be set to CSS3. 
 
Self-Assessment Exercise(s) 
 
(1) Which CSS property is used to change the text color of an 

element? 
a)  font-color 
b)  text-color 
c)  color 
d)  text-style 
Answer: c) color 
 
(2)  How do you make each word in a text start with a capital letter 

using CSS? 
a)  text-transform: uppercase; 
b)  text-transform: lowercase; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

192 

 

c) text-transform: capitalize; 
d) text-transform: initial; 
Answer: c) text-transform: capitalize; 
 
(3)  Which CSS property is used to change the background color of 

an element? 
a) background-color 
b) color 
c) bg-color 
d) background-style 
Answer: a) background-color 
 
(4)  How do you select an element with the id "header" in CSS? 
a) .header 
b) header 
c) #header 
d) *header 
Answer: c) #header 
 
(5) Which property is used to control the space between lines of text? 
a) line-height 
b) letter-spacing 
c) text-spacing 
d) word-spacing 
Answer: a) line-height 
 
Conclusion 
 
CSS is essential for web development, enabling designers to enhance 
the visual appeal and user experience of websites effectively. Through 
the comprehensive exploration of CSS syntax, selectors, properties, 
and responsive design principles, learners can create aesthetically 
pleasing, dynamic, and accessible web pages. By understanding the 
cascade, inheritance, and specificity, developers can efficiently manage 
complex styles across multiple pages. Ultimately, proficiency in CSS 
not only empowers developers to implement sophisticated design 
elements but also lays a solid foundation for advanced web 
technologies and frameworks. 
 
 
 
   4.0 Summary 
 
CSS is a fundamental aspect of web development, enabling designers 
to control the visual presentation of web pages. CSS allows for the 
separation of content HTML from design, providing a more flexible 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

193 

 

and efficient method for styling web pages. By using CSS, developers 
can apply styles such as colors, fonts, spacing, and layout properties to 
HTML elements, ensuring a consistent look across multiple pages of a 
website. This separation not only enhances maintainability but also 
improves the user experience by allowing for faster page loading times 
and easier adjustments to the site's design.CSS operates on a rule-based 
system where selectors target HTML elements, and declarations within 
curly braces define the style properties to be applied. These rules can 
be applied inline, embedded within the HTML file using the <style> 
tag, or in external style sheets linked via the <link> tag. The cascading 
nature of CSS means that styles can be overridden by more specific 
rules or those defined later in the stylesheet, allowing for sophisticated 
and nuanced design control. Advanced features such as media queries 
enable responsive design, adapting the layout to different screen sizes 
and devices, while CSS frameworks like Bootstrap provide pre-
designed components and grid systems to streamline the development 
process. 
 
 
 
              5.0 References/Further Reading 
 
Robbins, J. N. (2012). Learning web design: A beginner's guide to 

HTML, CSS, JavaScript, and web graphics. " O'Reilly Media, 
Inc.". 

 
McGrath, M. (2020). HTML in easy steps. In Easy Steps. 
 
Tabarés, R. (2021). HTML5 and the evolution of HTML; tracing the 

origins of digital platforms. Technology in Society, 65, 101529. 
 
Macaulay, M. (2017). Introduction to web interaction design: With 

Html and Css. Chapman and Hall/CRC. 
 
Rebah, H. B., Boukthir, H., & Chedebois, A. (2022). Website Design 

and Development with HTML5 and CSS3. John Wiley & Sons. 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

194 

 

MODULE 4  INTRODUCTION TO JAVASCRIPT 
 
MODULE INTRODUCTION 
 
Introduction to JavaScript a foundational module designed to equip you 
with the essential skills and knowledge to start coding in JavaScript. 
JavaScript is a versatile, high-level programming language that enables 
developers to create dynamic and interactive web applications. This 
module will guide you through the basics, laying a solid foundation for 
your journey into web development. From simple form validations to 
complex animations and single-page applications, JavaScript is the 
backbone of modern web development. This module is designed to 
guide you through the fundamental concepts and syntax of JavaScript, 
making it accessible even if you have no prior programming experience. 
By the end of this course, you will have the skills to write and 
understand basic JavaScript code and apply it to enhance the 
functionality of web pages.Throughout this module, you will explore a 
variety of essential topics, including variables, data types, operators, 
control structures, functions, objects, and arrays. Additionally, you will 
learn how to manipulate the Document Object Model (DOM) to create 
dynamic and interactive web pages. The module also covers debugging 
techniques and best practices to help you write clean, efficient, and 
maintainable code. With a mix of theoretical knowledge and practical 
assignments, this module aims to build a solid foundation in JavaScript, 
preparing you for more advanced studies in web development and 
beyond. Get ready to dive into coding and transform your ideas into 
interactive web applications. 
 
Unit 1  Basics of JavaScript 
Unit 2  JavaScript Functions 
Unit 3  Document Object Model (DOM) Manipulation 
 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

195 

 

Unit 1  Basics of JavaScript 
 
Contents 
 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 
3.0 Main Content 

3.1 Introduction to JavaScript 
3.2 Code structure 
3.3 Comments 
3.4 Variables 
3.5 Data types 
3.6 Interaction: alert, prompt, confirm 
3.7 Basic operators, maths 

4.0 Summary 
5.0 References/Further Readings 
 
 
           1.0  Introduction 
 
JavaScript is a versatile and powerful programming language that is 
essential for creating dynamic and interactive web content. Unlike 
HTML and CSS, which structure and style web pages respectively, 
JavaScript adds behavior to web pages, making it possible to create 
features such as interactive forms, animations, and real-time content 
updates. This unit on the Basics of JavaScript will introduce you to the 
fundamental concepts and syntax of the language, providing a solid 
foundation for understanding how JavaScript can be used to enhance 
web development projects. We will cover essential topics including 
variables, data types, operators, control structures, functions, and 
events, each of which plays a crucial role in building interactive web 
applications. By the end of this unit, you will have the knowledge and 
skills to write basic JavaScript programs and integrate them into web 
pages to create interactive user experiences. 
 
 
 
     2.0  Intended Learning Outcomes (ILOs) 
 
By the end of this unit, you will be able to: 
• discuss the Code structure 
• explain Comments 
• discuss Variables and data types 
• explain interaction: alert, prompt, confirm 
• explain basic operators, maths 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

196 

 

 
 
 3.0  Main Content 

 
3.1 Introduction to JavaScript 
 
Let’s see what’s so special about JavaScript, what we can achieve with 
it, and what other technologies play well with it. 
 
JavaScript was initially created to “make web pages alive”.The 
programs in this language are called scripts. They can be written right 
in a web page’s HTML and run automatically as the page loads.Scripts 
are provided and executed as plain text. They don’t need special 
preparation or compilation to run.In this aspect, JavaScript is very 
different from another language called Java. 
 
When JavaScript was created, it initially had another name: 
“LiveScript”. But Java was very popular at that time, so it was decided 
that positioning a new language as a “younger brother” of Java would 
help. 
 
But as it evolved, JavaScript became a fully independent language with 
its own specification called ECMAScript, and now it has no relation to 
Java at all. 
 
Today, JavaScript can execute not only in the browser, but also on the 
server, or actually on any device that has a special program called the 
JavaScript engine. 
 
The browser has an embedded engine sometimes called a “JavaScript 
virtual machine”. 
 
Different engines have different “codenames”. For example: 
V8 – in Chrome, Opera, and Edge. 
 
Spider Monkey – in Firefox. 
…There are other codenames like “Chakra” for IE, “JavaScriptCore”, 
“Nitro” and “SquirrelFish” for Safari, etc. 
 
The terms above are good to remember because they are used in 
developer articles on the internet. We’ll use them too. For instance, if 
“a feature X is supported by V8”, then it probably works in Chrome, 
Opera and Edge. 
 
How do engines work? 
Engines are complicated. But the basics are easy. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

197 

 

The engine (embedded if it’s a browser) reads (“parses”) the script. 
Then it converts (“compiles”) the script to machine code. 
And then the machine code runs, pretty fast. 
 
The engine applies optimizations at each step of the process. It even 
watches the compiled script as it runs, analyzes the data that flows 
through it, and further optimizes the machine code based on that 
knowledge. 
 
What can in-browser JavaScript do? 
Modern JavaScript is a “safe” programming language. It does not 
provide low-level access to memory or the CPU, because it was 
initially created for browsers which do not require it. 
JavaScript’s capabilities greatly depend on the environment it’s 
running in. For instance, Node.js supports functions that allow 
JavaScript to read/write arbitrary files, perform network requests, etc. 
In-browser JavaScript can do everything related to webpage 
manipulation, interaction with the user, and the webserver. 
 
For instance, in-browser JavaScript is able to: 
Add new HTML to the page, change the existing content, modify 
styles. 
React to user actions, run on mouse clicks, pointer movements, key 
presses. 
 
Send requests over the network to remote servers, download and 
upload files (so-called AJAX and COMET technologies). 
 
Get and set cookies, ask questions to the visitor, show messages. 
Remember the data on the client-side (“local storage”). 
What CAN’T in-browser JavaScript do? 
 
JavaScript’s abilities in the browser are limited to protect the user’s 
safety. The aim is to prevent an evil webpage from accessing private 
information or harming the user’s data. 
 
Examples of such restrictions include: 
JavaScript on a webpage may not read/write arbitrary files on the hard 
disk, copy them or execute programs. It has no direct access to OS 
functions. 
 
Modern browsers allow it to work with files, but the access is limited 
and only provided if the user does certain actions, like “dropping” a 
file into a browser window or selecting it via an <input> tag. 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

198 

 

There are ways to interact with the camera/microphone and other 
devices, but they require a user’s explicit permission. So a JavaScript-
enabled page may not sneakily enable a web-camera, observe the 
surroundings and send the information to the NSA. 
 
Different tabs/windows generally do not know about each other. 
Sometimes they do, for example when one window uses JavaScript to 
open the other one. But even in this case, JavaScript from one page 
may not access the other page if they come from different sites (from a 
different domain, protocol or port). 
 
This is called the “Same Origin Policy”. To work around that, both 
pages must agree for data exchange and must contain special 
JavaScript code that handles it. We’ll cover that in the tutorial. 
 
This limitation is, again, for the user’s safety. A page 
from http://anysite.com which a user has opened must not be able to 
access another browser tab with the URL http://gmail.com, for 
example, and steal information from there. 
 
JavaScript can easily communicate over the net to the server where the 
current page came from. But its ability to receive data from other 
sites/domains is crippled. Though possible, it requires explicit 
agreement (expressed in HTTP headers) from the remote side. Once 
again, that’s a safety limitation. 
 
Such limitations do not exist if JavaScript is used outside of the 
browser, for example on a server. Modern browsers also allow 
plugins/extensions which may ask for extended permissions. 
 
What makes JavaScript unique? 
There are at least three great things about JavaScript: 
• Full integration with HTML/CSS. 
• Simple things are done simply. 
• Supported by all major browsers and enabled by default. 

JavaScript is the only browser technology that combines these 
three things. 

 
That’s what makes JavaScript unique. That’s why it’s the most 
widespread tool for creating browser interfaces. 
That said, JavaScript can be used to create servers, mobile 
applications, etc. 
 
Languages “over” JavaScript 
The syntax of JavaScript does not suit everyone’s needs. Different 
people want different features. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

199 

 

That’s to be expected because projects and requirements are different 
for everyone. 
 
So, recently a plethora of new languages appeared, which 
are transpiled (converted) to JavaScript before they run in the browser. 
Modern tools make the transpilation very fast and transparent, actually 
allowing developers to code in another language and auto-converting it 
“under the hood”. 
 
Examples of such languages: 
• Coffee Script is “syntactic sugar” for JavaScript. It introduces 

shorter syntax, allowing us to write clearer and more precise 
code. Usually, Ruby devs like it. 

• TypeScript is concentrated on adding “strict data typing” to 
simplify the development and support of complex systems. It is 
developed by Microsoft. 

• Flow also adds data typing but in a different way. Developed by 
Facebook. 

• Dart is a standalone language that has its engine that runs in 
non-browser environments (like mobile apps), but also can be 
transpiled to JavaScript. Developed by Google. 

• Brython is a Python transpiler to JavaScript that enables the 
writing of applications in pure Python without JavaScript. 

• Kotlin is a modern, concise, and safe programming language 
that can target the browser or Node. 

 
There are more. Of course, even if we use one of these transpired 
languages, we should also know JavaScript to understand what we’re 
doing. 
 
3.2 Code structure 
 
The first thing we’ll study is the building blocks of code. 
 
Statements 
Statements are syntax constructs and commands that perform actions. 
We’ve already seen a statement, alert('Hello, world!'), which shows the 
message “Hello, world!”. 
 
We can have as many statements in our code as we want. Statements 
can be separated with a semicolon. 
For example, here we split “Hello World” into two alerts: 
alert('Hello'); alert('World'); 
Usually, statements are written on separate lines to make the code 
more readable: 
alert('Hello'); 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

200 

 

alert('World'); 
Semicolons 
A semicolon may be omitted in most cases when a line break exists. 
This would also work: 
alert('Hello') 
alert('World') 
Here, JavaScript interprets the line break as an “implicit” semicolon. 
This is called an automatic semicolon insertion. 
 
In most cases, a newline implies a semicolon. But “in most cases” 
does not mean “always”! 
There are cases when a newline does not mean a semicolon. For 
example: 
alert(3 + 
1 
+ 2); 
The code outputs 6 because JavaScript does not insert semicolons here. 
It is intuitively obvious that if the line ends with a plus "+", then it is 
an “incomplete expression”, so a semicolon there would be incorrect. 
And in this case, that works as intended. 
 
But there are situations where JavaScript “fails” to assume a 
semicolon where it is really needed. 
Errors which occur in such cases are quite hard to find and fix. 
An example of an error 
If you’re curious to see a concrete example of such an error, check this 
code out: 
alert("Hello"); 
 
[1, 2].forEach(alert); 
No need to think about the meaning of the brackets [] and forEach yet. 
We’ll study them later. For now, just remember the result of running 
the code: it shows Hello, then 1, then 2. 
Now let’s remove the semicolon after the alert: 
alert("Hello") 
 
[1, 2].forEach(alert); 
The difference compared to the code above is only one character: the 
semicolon at the end of the first line is gone. 
If we run this code, only the first Hello shows (and there’s an error, 
you may need to open the console to see it). There are no numbers any 
more. 
That’s because JavaScript does not assume a semicolon before square 
brackets [...]. So, the code in the last example is treated as a single 
statement. 
Here’s how the engine sees it: 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

201 

 

alert("Hello")[1, 2].forEach(alert); 
Looks weird, right? Such merging in this case is just wrong. We need 
to put a semicolon after alert for the code to work correctly. 
This can happen in other situations also. 
We recommend putting semicolons between statements even if they 
are separated by newlines. This rule is widely adopted by the 
community. Let’s note once again – it is possible to leave out 
semicolons most of the time. But it’s safer – especially for a beginner – 
to use them. 
3.3 Comments 
As time goes on, programs become more and more complex. It 
becomes necessary to add comments which describe what the code 
does and why. 
Comments can be put into any place of a script. They don’t affect its 
execution because the engine simply ignores them. 
One-line comments start with two forward slash characters //. 
The rest of the line is a comment. It may occupy a full line of its own 
or follow a statement. 
Like here: 
// This comment occupies a line of its own 
alert('Hello'); 
 
alert('World'); // This comment follows the statement 
Multiline comments start with a forward slash and an 
asterisk /*  and end with an asterisk and a forward slash */ . 
Like this: 
/* An example with two messages. 
This is a multiline comment. 
*/ 
alert('Hello'); 
alert('World'); 
The content of comments is ignored, so if we put code inside /* … */, 
it won’t execute. 
Sometimes it can be handy to temporarily disable a part of code: 
/* Commenting out the code 
alert('Hello'); 
*/ 
alert('World'); 
Use hotkeys! 
In most editors, a line of code can be commented out by pressing 
the Ctrl+/ hotkey for a single-line comment and something 
like Ctrl+Shift+/ – for multiline comments (select a piece of code and 
press the hotkey). For Mac, try Cmd instead of Ctrl and Option instead 
of Shift. 
Nested comments are not supported! 
There may not be /*...*/ inside another /*...*/. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

202 

 

Such code will die with an error: 
/* 
  /* nested comment ?!? */ 
*/ 
alert( 'World' ); 
Please, don’t hesitate to comment on your code. 
Comments increase the overall code footprint, but that’s not a problem 
at all. Many tools minify code before publishing it to a production 
server. They remove comments, so they don’t appear in the working 
scripts. Therefore, comments do not have negative effects on 
production at all. 
 
3.4 Variables 
 
Most of the time, a JavaScript application needs to work with 
information. Here are two examples: 
An online shop – the information might include goods being sold and a 
shopping cart. 
A chat application – the information might include users, messages, 
and much more. 
Variables are used to store this information. 
A variable 
A variable is a “named storage” for data. We can use variables to store 
goodies, visitors, and other data. 
To create a variable in JavaScript, use the let keyword. 
The statement below creates (in other words: declares) a variable with 
the name “message”: 
let message; 
Now, we can put some data into it by using the assignment operator =: 
let message; 
 
message = 'Hello'; // store the string 'Hello' in the variable named 
message 
The string is now saved into the memory area associated with the 
variable. We can access it using the variable name: 
let message; 
message = 'Hello!'; 
 
alert(message); // shows the variable content 
To be concise, we can combine the variable declaration and assignment 
into a single line: 
let message = 'Hello!'; // define the variable and assign the value 
alert(message); // Hello! 
We can also declare multiple variables in one line: 
let user = 'John', age = 25, message = 'Hello'; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

203 

 

That might seem shorter, but we don’t recommend it. For the sake of 
better readability, please use a single line per variable. 
The multiline variant is a bit longer, but easier to read: 
let user = 'John'; 
let age = 25; 
let message = 'Hello'; 
Some people also define multiple variables in this multiline style: 
let user = 'John', 
  age = 25, 
  message = 'Hello'; 
…Or even in the “comma-first” style: 
let user = 'John' 
  , age = 25 
  , message = 'Hello'; 
Technically, all these variants do the same thing. So, it’s a matter of 
personal taste and aesthetics. 
var instead of let 
In older scripts, you may also find another keyword: var instead of let: 
var message = 'Hello'; 
The var keyword is almost the same as let. It also declares a variable 
but in a slightly different, “old-school” way. 
There are subtle differences between let and var, but they do not matter 
to us yet. We’ll cover them in detail in the chapter The old "var". 
A real-life analogy 
We can easily grasp the concept of a “variable” if we imagine it as a 
“box” for data, with a uniquely-named sticker on it. 
For instance, the variable message can be imagined as a box 
labelled "message" with the value "Hello!" in it: 
We can put any value in the box. 
We can also change it as many times as we want: 
let message; 
 
message = 'Hello!'; 
 
message = 'World!'; // value changed 
 
alert(message); 
When the value is changed, the old data is removed from the variable: 
We can also declare two variables and copy data from one into the 
other. 
let hello = 'Hello world!'; 
 
let message; 
 
// copy 'Hello world' from hello into message 
message = hello; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

204 

 

 
// now two variables hold the same data 
alert(hello); // Hello world! 
alert(message); // Hello world! 
Declaring twice triggers an error 
A variable should be declared only once. 
A repeated declaration of the same variable is an error: 
let message = "This"; 
 
// repeated 'let' leads to an error 
let message = "That"; // SyntaxError: 'message' has already been 
declared 
So, we should declare a variable once and then refer to it without let. 
Functional languages 
It’s interesting to note that there exist so-called pure 
functional programming languages, such as Haskell, that forbid 
changing variable values. 
In such languages, once the value is stored “in the box”, it’s there 
forever. If we need to store something else, the language forces us to 
create a new box (declare a new variable). We can’t reuse the old one. 
Though it may seem a little odd at first sight, these languages are quite 
capable of serious development. More than that, there are areas like 
parallel computations where this limitation confers certain benefits. 
Variable naming 
There are two limitations on variable names in JavaScript: 
The name must contain only letters, digits, or the symbols $ and _. 
The first character must not be a digit. 
Examples of valid names: 
let userName; 
let test123; 
When the name contains multiple words, camelCase is commonly 
used. That is: words go one after another, each word except first 
starting with a capital letter: myVeryLongName. 
What’s interesting – the dollar sign '$' and the underscore '_' can also 
be used in names. They are regular symbols, just like letters, without 
any special meaning. 
These names are valid: 
let $ = 1; // declared a variable with the name "$" 
let _ = 2; // and now a variable with the name "_" 
 
alert($ + _); // 3 
Examples of incorrect variable names: 
let 1a; // cannot start with a digit 
 
let my-name; // hyphens '-' aren't allowed in the name 
Case matters 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

205 

 

Variables named apple and APPLE are two different variables. 
Non-Latin letters are allowed, but not recommended 
It is possible to use any language, including Cyrillic letters, Chinese 
logograms and so on, like this: 
let имя = '...'; 
let 我 = '...'; 
Technically, there is no error here. Such names are allowed, but there 
is an international convention to use English in variable names. Even if 
we’re writing a small script, it may have a long life ahead. People from 
other countries may need to read it sometime. 
Reserved names 
There is a list of reserved words, which cannot be used as variable 
names because they are used by the language itself. 
For example: let, class, return, and function are reserved. 
The code below gives a syntax error: 
let let = 5; // can't name a variable "let", error! 
let return = 5; // also can't name it "return", error! 
An assignment without use strict 
Normally, we need to define a variable before using it. But in the old 
times, it was technically possible to create a variable by a mere 
assignment of the value without using let. This still works now if we 
don’t put use strict in our scripts to maintain compatibility with old 
scripts. 
// note: no "use strict" in this example 
 
num = 5; // the variable "num" is created if it didn't exist 
 
alert(num); // 5 
This is a bad practice and would cause an error in strict mode: 
"use strict"; 
 
num = 5; // error: num is not defined 
Constants 
To declare a constant (unchanging) variable, use const instead of let: 
const myBirthday = '18.04.1982'; 
Variables declared using const are called “constants”. They cannot be 
reassigned. An attempt to do so would cause an error: 
const myBirthday = '18.04.1982'; 
 
myBirthday = '01.01.2001'; // error, can't reassign the constant! 
When a programmer is sure that a variable will never change, they can 
declare it with const to guarantee and communicate that fact to 
everyone. 
Uppercase constants 
There is a widespread practice to use constants as aliases for difficult-
to-remember values that are known before execution. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

206 

 

Such constants are named using capital letters and underscores. 
For instance, let’s make constants for colors in so-called “web” 
(hexadecimal) format: 
const COLOR_RED = "#F00"; 
const COLOR_GREEN = "#0F0"; 
const COLOR_BLUE = "#00F"; 
const COLOR_ORANGE = "#FF7F00"; 
 
// ...when we need to pick a color 
let color = COLOR_ORANGE; 
alert(color); // #FF7F00 
Benefits: 
COLOR_ORANGE is much easier to remember than "#FF7F00". 
It is much easier to mistype "#FF7F00" than COLOR_ORANGE. 
When reading the code, COLOR_ORANGE is much more meaningful 
than #FF7F00. 
When should we use capitals for a constant and when should we name 
it normally? Let’s make that clear. 
Being a “constant” just means that a variable’s value never changes. 
But some constants are known before execution (like a hexadecimal 
value for red) and some constants are calculated in run-time, during 
the execution, but do not change after their initial assignment. 
For instance: 
const pageLoadTime = /* time taken by a webpage to load */; 
The value of pageLoadTime is not known before the page load, so it’s 
named normally. But it’s still a constant because it doesn’t change after 
the assignment. 
In other words, capital-named constants are only used as aliases for 
“hard-coded” values. 
Name things right 
Talking about variables, there’s one more extremely important thing. 
A variable name should have a clean, obvious meaning, describing the 
data that it stores. 
Variable naming is one of the most important and complex skills in 
programming. A glance at variable names can reveal which code was 
written by a beginner versus an experienced developer. 
In a real project, most of the time is spent modifying and extending an 
existing code base rather than writing something completely separate 
from scratch. When we return to some code after doing something else 
for a while, it’s much easier to find information that is well-labelled. 
Or, in other words, when the variables have good names. 
Please spend time thinking about the right name for a variable before 
declaring it. Doing so will repay you handsomely. 
Some good-to-follow rules are: 
Use human-readable names like userName or shoppingCart. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

207 

 

Stay away from abbreviations or short names like a, b, and c, unless 
you know what you’re doing. 
Make names maximally descriptive and concise. Examples of bad 
names are data and value. Such names say nothing. It’s only okay to 
use them if the context of the code makes it exceptionally obvious 
which data or value the variable is referencing. 
Agree on terms within your team and in your mind. If a site visitor is 
called a “user” then we should name related 
variables currentUser or newUser instead 
of currentVisitor or newManInTown. 
Sounds simple? Indeed it is, but creating descriptive and concise 
variable names in practice is not. Go for it. 
Reuse or create? 
And the last note. There are some lazy programmers who, instead of 
declaring new variables, tend to reuse existing ones. 
As a result, their variables are like boxes into which people throw 
different things without changing their stickers. What’s inside the box 
now? Who knows? We need to come closer and check. 
Such programmers save a little bit on variable declaration but lose ten 
times more on debugging. 
An extra variable is good, not evil. 
Modern JavaScript minifiers and browsers optimize code well enough, 
so it won’t create performance issues. Using different variables for 
different values can even help the engine optimize your code. 
Summary 
We can declare variables to store data by using the var, let, 
or const keywords. 
let – is a modern variable declaration. 
var – is an old-school variable declaration. Normally we don’t use it at 
all, but we’ll cover subtle differences from let in the chapter The old 
"var", just in case you need them. 
const – is like let, but the value of the variable can’t be changed. 
Variables should be named in a way that allows us to easily understand 
what’s inside them. 
Tasks 
Working with variables 
importance: 2 
Declare two variables: admin and name. 
Assign the value "John" to name. 
Copy the value from name to admin. 
Show the value of admin using alert (must output “John”). 
solution 
Giving the right name 
importance: 3 
Create a variable with the name of our planet. How would you name 
such a variable? 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

208 

 

Create a variable to store the name of a current visitor to a website. 
How would you name that variable? 
solution 
Uppercase const? 
importance: 4 
Examine the following code: 
const birthday = '18.04.1982'; 
const age = someCode(birthday); 
Here we have a constant birthday for the date, and also 
the age constant. 
The age is calculated from birthday using someCode(), which means a 
function call that we didn’t explain yet (we will soon!), but the details 
don’t matter here, the point is that age is calculated somehow based on 
the birthday. 
Would it be right to use upper case for a birthday? For age? Or even 
for both? 
const BIRTHDAY = '18.04.1982'; // make birthday uppercase? 
 
const AGE = someCode(BIRTHDAY); // make age uppercase? 
 
3.5 Data types 
 
A value in JavaScript is always of a certain type. For example, a string 
or a number. 
There are eight basic data types in JavaScript. Here, we’ll cover them 
in general and in the next chapters we’ll talk about each of them in 
detail. 
We can put any type in a variable. For example, a variable can at one 
moment be a string and then store a number: 
// no error 
let message = "hello"; 
message = 123456; 
Programming languages that allow such things, such as JavaScript, are 
called “dynamically typed”, meaning that there exist data types, but 
variables are not bound to any of them. 
Number 
let n = 123; 
n = 12.345; 
The number type represents both integer and floating point numbers. 
There are many operations for numbers, e.g. multiplication *, 
division /, addition +, subtraction -, and so on. 
Besides regular numbers, there are so-called “special numeric values” 
which also belong to this data type: Infinity, -Infinity and NaN. 
Infinity represents the mathematical Infinity ∞. It is a special value 
that’s greater than any number. 
We can get it as a result of division by zero: 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

209 

 

alert( 1 / 0 ); // Infinity 
Or just reference it directly: 
alert( Infinity ); // Infinity 
NaN represents a computational error. It is a result of an incorrect or an 
undefined mathematical operation, for instance: 
alert( "not a number" / 2 ); // NaN, such division is erroneous 
NaN is sticky. Any further mathematical operation 
on NaN returns NaN: 
alert( NaN + 1 ); // NaN 
alert( 3 * NaN ); // NaN 
alert( "not a number" / 2 - 1 ); // NaN 
So, if there’s a NaN somewhere in a mathematical expression, it 
propagates to the whole result (there’s only one exception to that: NaN 
** 0 is 1). 
Mathematical operations are safe 
Doing maths is “safe” in JavaScript. We can do anything: divide by 
zero, treat non-numeric strings as numbers, etc. 
The script will never stop with a fatal error (“die”). At worst, we’ll 
get NaN as the result. 
Special numeric values formally belong to the “number” type. Of 
course, they are not numbers in the common sense of this word. 
We’ll see more about working with numbers in the chapter Numbers. 
BigInt 
In JavaScript, the “number” type cannot safely represent integer values 
larger than (253-1) (that’s 9007199254740991), or less than -(253-
1) for negatives. 
To be really precise, the “number” type can store larger integers (up 
to 1.7976931348623157 * 10308), but outside of the safe integer 
range ±(253-1) there’ll be a precision error, because not all digits fit 
into the fixed 64-bit storage. So an “approximate” value may be stored. 
For example, these two numbers (right above the safe range) are the 
same: 
console.log(9007199254740991 + 1); // 9007199254740992 
console.log(9007199254740991 + 2); // 9007199254740992 
So to say, all odd integers greater than (253-1) can’t be stored at all in 
the “number” type. 
For most purposes ±(253-1) range is quite enough, but sometimes we 
need the entire range of really big integers, e.g. for cryptography or 
microsecond-precision timestamps. 
BigInt type was recently added to the language to represent integers of 
arbitrary length. 
A BigInt value is created by appending n to the end of an integer: 
// the "n" at the end means it's a BigInt 
const bigInt = 1234567890123456789012345678901234567890n; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

210 

 

As BigInt numbers are rarely needed, we don’t cover them here, but 
devoted them a separate chapter BigInt. Read it when you need such 
big numbers. 
Compatibility issues 
Right now, BigInt is supported in Firefox/Chrome/Edge/Safari, but not 
in IE. 
String 
A string in JavaScript must be surrounded by quotes. 
let str = "Hello"; 
let str2 = 'Single quotes are ok too'; 
let phrase = `can embed another ${str}`; 
In JavaScript, there are 3 types of quotes. 
Double quotes: "Hello". 
Single quotes: 'Hello'. 
Backticks: `Hello`. 
Double and single quotes are “simple” quotes. There’s practically no 
difference between them in JavaScript. 
Backticks are “extended functionality” quotes. They allow us to embed 
variables and expressions into a string by wrapping them in ${…}, for 
example: 
let name = "John"; 
 
// embed a variable 
alert( `Hello, ${name}!` ); // Hello, John! 
 
// embed an expression 
alert( `the result is ${1 + 2}` ); // the result is 3 
The expression inside ${…} is evaluated and the result becomes a part 
of the string. We can put anything in there: a variable like name or an 
arithmetical expression like 1 + 2 or something more complex. 
Please note that this can only be done in backticks. Other quotes don’t 
have this embedding functionality! 
alert( "the result is ${1 + 2}" ); // the result is ${1 + 2} (double quotes 
do nothing) 
We’ll cover strings more thoroughly in the chapter Strings. 
There is no character type. 
In some languages, there is a special “character” type for a single 
character. For example, in the C language and in Java it is called 
“char”. 
In JavaScript, there is no such type. There’s only one type: string. A 
string may consist of zero characters (be empty), one character or 
many of them. 
Boolean (logical type) 
The boolean type has only two values: true and false. 
This type is commonly used to store yes/no values: true means “yes, 
correct”, and false means “no, incorrect”. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

211 

 

For instance: 
let nameFieldChecked = true; // yes, name field is checked 
let ageFieldChecked = false; // no, age field is not checked 
Boolean values also come as a result of comparisons: 
let isGreater = 4 > 1; 
 
alert( isGreater ); // true (the comparison result is "yes") 
We’ll cover booleans more deeply in the chapter Logical operators. 
The “null” value 
The special null value does not belong to any of the types described 
above. 
It forms a separate type of its own which contains only the null value: 
let age = null; 
In JavaScript, null is not a “reference to a non-existing object” or a 
“null pointer” like in some other languages. 
It’s just a special value which represents “nothing”, “empty” or “value 
unknown”. 
The code above states that age is unknown. 
The “undefined” value 
The special value undefined also stands apart. It makes a type of its 
own, just like null. 
The meaning of undefined is “value is not assigned”. 
If a variable is declared, but not assigned, then its value is undefined: 
let age; 
 
alert(age); // shows "undefined" 
Technically, it is possible to explicitly assign undefined to a variable: 
let age = 100; 
 
// change the value to undefined 
age = undefined; 
 
alert(age); // "undefined" 
…But we don’t recommend doing that. Normally, one uses null to 
assign an “empty” or “unknown” value to a variable, 
while undefined is reserved as a default initial value for unassigned 
things. 
Objects and Symbols 
The object type is special. 
All other types are called “primitive” because their values can contain 
only a single thing (be it a string or a number or whatever). In contrast, 
objects are used to store collections of data and more complex entities. 
Being that important, objects deserve special treatment. We’ll deal 
with them later in the chapter Objects after we learn more about 
primitives. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

212 

 

The symbol type is used to create unique identifiers for objects. We 
have to mention it here for the sake of completeness, but also postpone 
the details till we know objects. 
The typeof operator 
The typeof operator returns the type of the operand. It’s useful when 
we want to process values of different types differently or just want to 
do a quick check. 
A call to typeof x returns a string with the type name: 
typeof undefined // "undefined" 
 
typeof 0 // "number" 
 
typeof 10n // "bigint" 
 
typeof true // "boolean" 
 
typeof "foo" // "string" 
 
typeof Symbol("id") // "symbol" 
 
typeof Math // "object"  (1) 
 
typeof null // "object"  (2) 
 
typeof alert // "function"  (3) 
The last three lines may need additional explanation: 
Math is a built-in object that provides mathematical operations. We 
will learn it in the chapter Numbers. Here, it serves just as an example 
of an object. 
The result of typeof null is "object". That’s an officially recognized 
error in typeof, coming from very early days of JavaScript and kept for 
compatibility. Definitely, null is not an object. It is a special value with 
a separate type of its own. The behavior of typeof is wrong here. 
The result of typeof alert is "function", because alert is a function. 
We’ll study functions in the next chapters where we’ll also see that 
there’s no special “function” type in JavaScript. Functions belong to 
the object type. But typeof treats them differently, returning "function". 
That also comes from the early days of JavaScript. Technically, such 
behavior isn’t correct, but can be convenient in practice. 
The typeof(x) syntax 
You may also come across another syntax: typeof(x). It’s the same 
as typeof x. 
To put it clear: typeof is an operator, not a function. The parentheses 
here aren’t a part of typeof. It’s the kind of parentheses used for 
mathematical grouping. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

213 

 

Usually, such parentheses contain a mathematical expression, such 
as (2 + 2), but here they contain only one argument (x). Syntactically, 
they allow to avoid a space between the typeof operator and its 
argument, and some people like it. 
Some people prefer typeof(x), although the typeof x syntax is much 
more common. 
Summary 
There are 8 basic data types in JavaScript. 
Seven primitive data types: 
number for numbers of any kind: integer or floating-point, integers are 
limited by ±(253-1). 
bigint for integer numbers of arbitrary length. 
string for strings. A string may have zero or more characters, there’s no 
separate single-character type. 
boolean for true/false. 
null for unknown values – a standalone type that has a single 
value null. 
undefined for unassigned values – a standalone type that has a single 
value undefined. 
symbol for unique identifiers. 
And one non-primitive data type: 
object for more complex data structures. 
The typeof operator allows us to see which type is stored in a variable. 
Usually used as typeof x, but typeof(x) is also possible. 
Returns a string with the name of the type, like "string". 
For null returns "object" – this is an error in the language, it’s not an 
object. 
In the next chapters, we’ll concentrate on primitive values and once 
we’re familiar with them, we’ll move on to objects. 
 
Tasks 
String quotes 
What is the output of the script? 
let name = "Ilya"; 
 
alert( `hello ${1}` ); // ? 
 
alert( `hello ${"name"}` ); // ? 
 
alert( `hello ${name}` ); // ? 
 
3.6 Interaction: alert, prompt, confirm 
 
As we’ll be using the browser as our demo environment, let’s see a 
couple of functions to interact with the user: alert, prompt and confirm. 
alert 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

214 

 

This one we’ve seen already. It shows a message and waits for the user 
to press “OK”. 
For example: 
alert("Hello"); 
The mini-window with the message is called a modal window. The 
word “modal” means that the visitor can’t interact with the rest of the 
page, press other buttons, etc, until they have dealt with the window. In 
this case – until they press “OK”. 
prompt 
The function prompt accepts two arguments: 
result = prompt(title, [default]); 
It shows a modal window with a text message, an input field for the 
visitor, and the buttons OK/Cancel. 
title 
The text to show the visitor. 
default 
An optional second parameter, the initial value for the input field. 
The square brackets in syntax [...] 
The square brackets around default in the syntax above denote that the 
parameter is optional, not required. 
The visitor can type something in the prompt input field and press OK. 
Then we get that text in the result. Or they can cancel the input by 
pressing Cancel or hitting the Esc key, then we get null as the result. 
The call to prompt returns the text from the input field or null if the 
input was canceled. 
For instance: 
let age = prompt('How old are you?', 100); 
 
alert(`You are ${age} years old!`); // You are 100 years old! 
In IE: always supply a default 
The second parameter is optional, but if we don’t supply it, Internet 
Explorer will insert the text "undefined" into the prompt. 
Run this code in Internet Explorer to see: 
let test = prompt("Test"); 
So, for prompts to look good in IE, we recommend always providing 
the second argument: 
let test = prompt("Test", ''); // <-- for IE 
confirm 
The syntax: 
result = confirm(question); 
The function confirm shows a modal window with a question and two 
buttons: OK and Cancel. 
The result is true if OK is pressed and false otherwise. 
For example: 
let isBoss = confirm("Are you the boss?"); 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

215 

 

alert( isBoss ); // true if OK is pressed 
Summary 
We covered 3 browser-specific functions to interact with visitors: 
alert 
shows a message. 
prompt 
shows a message asking the user to input text. It returns the text or, if 
Cancel button or Esc is clicked, null. 
confirm 
shows a message and waits for the user to press “OK” or “Cancel”. It 
returns true for OK and false for Cancel/Esc. 
All these methods are modal: they pause script execution and don’t 
allow the visitor to interact with the rest of the page until the window 
has been dismissed. 
There are two limitations shared by all the methods above: 
The exact location of the modal window is determined by the browser. 
Usually, it’s in the center. 
The exact look of the window also depends on the browser. We can’t 
modify it. 
That is the price for simplicity. There are other ways to show nicer 
windows and richer interaction with the visitor, but if “bells and 
whistles” do not matter much, these methods work just fine. 
 
3.7 Basic operators, maths 
 
We know many operators from school. They are things like addition +, 
multiplication *, subtraction -, and so on. 
In this chapter, we’ll start with simple operators, then concentrate on 
JavaScript-specific aspects, not covered by school arithmetic. 
Terms: “unary”, “binary”, “operand” 
Before we move on, let’s grasp some common terminology. 
An operand – is what operators are applied to. For instance, in the 
multiplication of 5 * 2 there are two operands: the left operand is 5 and 
the right operand is 2. Sometimes, people call these “arguments” 
instead of “operands”. 
An operator is unary if it has a single operand. For example, the unary 
negation - reverses the sign of a number: 
let x = 1; 
 
x = -x; 
alert( x ); // -1, unary negation was applied 
An operator is binary if it has two operands. The same minus exists in 
binary form as well: 
let x = 1, y = 3; 
alert( y - x ); // 2, binary minus subtracts values 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

216 

 

Formally, in the examples above we have two different operators that 
share the same symbol: the negation operator, a unary operator that 
reverses the sign, and the subtraction operator, a binary operator that 
subtracts one number from another. 
Maths 
The following math operations are supported: 
Addition +, 
Subtraction -, 
Multiplication *, 
Division /, 
Remainder %, 
Exponentiation **. 
The first four are straightforward, while % and ** need a few words 
about them. 
Remainder % 
The remainder operator %, despite its appearance, is not related to 
percents. 
The result of a % b is the remainder of the integer division of a by b. 
For instance: 
alert( 5 % 2 ); // 1, the remainder of 5 divided by 2 
alert( 8 % 3 ); // 2, the remainder of 8 divided by 3 
alert( 8 % 4 ); // 0, the remainder of 8 divided by 4 
Exponentiation ** 
The exponentiation operator a ** b raises a to the power of b. 
In school maths, we write that as ab. 
For instance: 
alert( 2 ** 2 ); // 2² = 4 
alert( 2 ** 3 ); // 2³ = 8 
alert( 2 ** 4 ); // 2⁴ = 16 
Just like in maths, the exponentiation operator is defined for non-
integer numbers as well. 
For example, a square root is an exponentiation by ½: 
alert( 4 ** (1/2) ); // 2 (power of 1/2 is the same as a square root) 
alert( 8 ** (1/3) ); // 2 (power of 1/3 is the same as a cubic root) 
String concatenation with binary + 
Let’s meet the features of JavaScript operators that are beyond school 
arithmetics. 
Usually, the plus operator + sums numbers. 
But, if the binary + is applied to strings, it merges (concatenates) them: 
let s = "my" + "string"; 
alert(s); // mystring 
Note that if any of the operands is a string, then the other one is 
converted to a string too. 
For example: 
alert( '1' + 2 ); // "12" 
alert( 2 + '1' ); // "21" 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

217 

 

See, it doesn’t matter whether the first operand is a string or the second 
one. 
Here’s a more complex example: 
alert(2 + 2 + '1' ); // "41" and not "221" 
Here, operators work one after another. The first + sums two numbers, 
so it returns 4, then the next + adds the string 1 to it, so it’s like 4 + '1' 
= '41'. 
alert('1' + 2 + 2); // "122" and not "14" 
Here, the first operand is a string, the compiler treats the other two 
operands as strings too. The 2 gets concatenated to '1', so it’s like '1' + 
2 = "12" and "12" + 2 = "122". 
The binary + is the only operator that supports strings in such a way. 
Other arithmetic operators work only with numbers and always convert 
their operands to numbers. 
Here’s the demo for subtraction and division: 
alert( 6 - '2' ); // 4, converts '2' to a number 
alert( '6' / '2' ); // 3, converts both operands to numbers 
Numeric conversion, unary + 
The plus + exists in two forms: the binary form that we used above and 
the unary form. 
The unary plus or, in other words, the plus operator + applied to a 
single value, doesn’t do anything to numbers. But if the operand is not 
a number, the unary plus converts it into a number. 
For example: 
// No effect on numbers 
let x = 1; 
alert( +x ); // 1 
 
let y = -2; 
alert( +y ); // -2 
 
// Converts non-numbers 
alert( +true ); // 1 
alert( +"" );   // 0 
It actually does the same thing as Number(...), but is shorter. 
The need to convert strings to numbers arises very often. For example, 
if we are getting values from HTML form fields, they are usually 
strings. What if we want to sum them? 
The binary plus would add them as strings: 
let apples = "2"; 
let oranges = "3"; 
 
alert( apples + oranges ); // "23", the binary plus concatenates strings 
If we want to treat them as numbers, we need to convert and then sum 
them: 
let apples = "2"; 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

218 

 

let oranges = "3"; 
 
// both values converted to numbers before the binary plus 
alert( +apples + +oranges ); // 5 
 
// the longer variant 
// alert( Number(apples) + Number(oranges) ); // 5 
From a mathematician’s standpoint, the abundance of pluses may seem 
strange. But from a programmer’s standpoint, there’s nothing special: 
unary pluses are applied first, they convert strings to numbers, and then 
the binary plus sums them up. 
Why are unary pluses applied to values before the binary ones? As 
we’re going to see, that’s because of their higher precedence. 
Operator precedence 
If an expression has more than one operator, the execution order is 
defined by their precedence, or, in other words, the default priority 
order of operators. 
From school, we all know that the multiplication in the expression 1 + 
2 * 2 should be calculated before the addition. That’s exactly the 
precedence thing. The multiplication is said to have a higher 
precedence than the addition. 
Parentheses override any precedence, so if we’re not satisfied with the 
default order, we can use them to change it. For example, write (1 + 2) 
* 2. 
There are many operators in JavaScript. Every operator has a 
corresponding precedence number. The one with the larger number 
executes first. If the precedence is the same, the execution order is 
from left to right. 
Here’s an extract from the precedence table (you don’t need to 
remember this, but note that unary operators are higher than 
corresponding binary ones): 
Precedence Name Sign 
… … … 
14 unary plus + 
14 unary negation - 
13 exponentiation **  
12 multiplication * 
12 Division / 

11 Addition + 
11 subtraction - 
… … … 
2 assignment = 
… … … 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

219 

 

As we can see, the “unary plus” has a priority of 14 which is higher 
than the 11 of “addition” (binary plus). That’s why, in the 
expression "+apples + +oranges", unary pluses work before the 
addition. 
Assignment 
Let’s note that an assignment = is also an operator. It is listed in the 
precedence table with the very low priority of 2. 
That’s why, when we assign a variable, like x = 2 * 2 + 1, the 
calculations are done first and then the = is evaluated, storing the result 
in x. 
let x = 2 * 2 + 1; 
 
alert( x ); // 5 
Assignment = returns a value 
The fact of = being an operator, not a “magical” language construct has 
an interesting implication. 
All operators in JavaScript return a value. That’s obvious for + and -, 
but also true for =. 
The call x = value writes the value into x and then returns it. 
Here’s a demo that uses an assignment as part of a more complex 
expression: 
let a = 1; 
let b = 2; 
 
let c = 3 - (a = b + 1); 
 
alert( a ); // 3 
alert( c ); // 0 
In the example above, the result of expression (a = b + 1) is the value 
that was assigned to a (that is 3). It is then used for further evaluations. 
Funny code, isn’t it? We should understand how it works because 
sometimes we see it in JavaScript libraries. 
Although, please don’t write the code like that. Such tricks definitely 
don’t make code clearer or readable. 
Chaining assignments 
Another interesting feature is the ability to chain assignments: 
let a, b, c; 
 
a = b = c = 2 + 2; 
 
alert( a ); // 4 
alert( b ); // 4 
alert( c ); // 4 
Chained assignments evaluate from right to left. First, the rightmost 
expression 2 + 2 is evaluated and then assigned to the variables on the 
left: c, b and a. At the end, all the variables share a single value. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

220 

 

Once again, for the purposes of readability it’s better to split such code 
into few lines: 
c = 2 + 2; 
b = c; 
a = c; 
That’s easier to read, especially when eye-scanning the code fast. 
Modify-in-place 
We often need to apply an operator to a variable and store the new 
result in that same variable. 
For example: 
let n = 2; 
n = n + 5; 
n = n * 2; 
This notation can be shortened using the operators += and *=: 
let n = 2; 
n += 5; // now n = 7 (same as n = n + 5) 
n *= 2; // now n = 14 (same as n = n * 2) 
 
alert( n ); // 14 
Short “modify-and-assign” operators exist for all arithmetical and 
bitwise operators: /=, -=, etc. 
Such operators have the same precedence as a normal assignment, so 
they run after most other calculations: 
let n = 2; 
 
n *= 3 + 5; // right part evaluated first, same as n *= 8 
 
alert( n ); // 16 
Increment/decrement 
Increasing or decreasing a number by one is among the most common 
numerical operations. 
So, there are special operators for it: 
Increment ++ increases a variable by 1: 
let counter = 2; 
counter++;        // works the same as counter = counter + 1, but is 
shorter 
alert( counter ); // 3 
Decrement -- decreases a variable by 1: 
let counter = 2; 
counter--;        // works the same as counter = counter - 1, but is shorter 
alert( counter ); // 1 
Important: 
Increment/decrement can only be applied to variables. Trying to use it 
on a value like 5++ will give an error. 
The operators ++ and -- can be placed either before or after a variable. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

221 

 

When the operator goes after the variable, it is in “postfix 
form”: counter++. 
The “prefix form” is when the operator goes before the 
variable: ++counter. 
Both of these statements do the same thing: increase counter by 1. 
Is there any difference? Yes, but we can only see it if we use the 
returned value of ++/--. 
Let’s clarify. As we know, all operators return a value. 
Increment/decrement is no exception. The prefix form returns the new 
value while the postfix form returns the old value (prior to 
increment/decrement). 
To see the difference, here’s an example: 
let counter = 1; 
let a = ++counter; // (*) 
 
alert(a); // 2 
In the line (*), the prefix form ++counter increments counter and 
returns the new value, 2. So, the alert shows 2. 
Now, let’s use the postfix form: 
let counter = 1; 
let a = counter++; // (*) changed ++counter to counter++ 
 
alert(a); // 1 
In the line (*), the postfix form counter++ also increments counter but 
returns the old value (prior to increment). So, the alert shows 1. 
To summarize: 
If the result of increment/decrement is not used, there is no difference 
in which form to use: 
let counter = 0; 
counter++; 
++counter; 
alert( counter ); // 2, the lines above did the same 
If we’d like to increase a value and immediately use the result of the 
operator, we need the prefix form: 
let counter = 0; 
alert( ++counter ); // 1 
If we’d like to increment a value but use its previous value, we need 
the postfix form: 
let counter = 0; 
alert( counter++ ); // 0 
Increment/decrement among other operators 
The operators ++/-- can be used inside expressions as well. Their 
precedence is higher than most other arithmetical operations. 
For instance: 
let counter = 1; 
alert( 2 * ++counter ); // 4 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

222 

 

Compare with: 
let counter = 1; 
alert( 2 * counter++ ); // 2, because counter++ returns the "old" value 
Though technically okay, such notation usually makes code less 
readable. One line does multiple things – not good. 
While reading code, a fast “vertical” eye-scan can easily miss 
something like counter++ and it won’t be obvious that the variable 
increased. 
We advise a style of “one line – one action”: 
let counter = 1; 
alert( 2 * counter ); 
counter++; 
Bitwise operators 
Bitwise operators treat arguments as 32-bit integer numbers and work 
on the level of their binary representation. 
These operators are not JavaScript-specific. They are supported in 
most programming languages. 
The list of operators: 
AND ( & ) 
OR ( | ) 
XOR ( ^ ) 
NOT ( ~ ) 
LEFT SHIFT ( << ) 
RIGHT SHIFT ( >> ) 
ZERO-FILL RIGHT SHIFT ( >>> ) 
These operators are used very rarely, when we need to fiddle with 
numbers on the very lowest (bitwise) level. We won’t need these 
operators any time soon, as web development has little use of them, but 
in some special areas, such as cryptography, they are useful. You can 
read the Bitwise Operators chapter on MDN when a need arises. 
Comma 
The comma operator is one of the rarest and most unusual operators. 
Sometimes, it’s used to write shorter code, so we need to know it in 
order to understand what’s going on. 
The comma operator allows us to evaluate several expressions, 
dividing them with a comma , Each of them is evaluated but only the 
result of the last one is returned. 
For example: 
let a = (1 + 2, 3 + 4); 
 
alert( a ); // 7 (the result of 3 + 4) 
Here, the first expression 1 + 2 is evaluated and its result is thrown 
away. Then, 3 + 4 is evaluated and returned as the result. 
Comma has a very low precedence 
Please note that the comma operator has very low precedence, lower 
than =, so parentheses are important in the example above. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

223 

 

Without them: a = 1 + 2, 3 + 4 evaluates + first, summing the numbers 
into a = 3, 7, then the assignment operator = assigns a = 3, and the rest 
is ignored. It’s like (a = 1 + 2), 3 + 4. 
Why do we need an operator that throws away everything except the 
last expression? 
Sometimes, people use it in more complex constructs to put several 
actions in one line. 
For example: 
// three operations in one line 
for (a = 1, b = 3, c = a * b; a < 10; a++) { 
 ... 
} 
Such tricks are used in many JavaScript frameworks. That’s why we’re 
mentioning them. But usually they don’t improve code readability so 
we should think well before using them. 
 
Self-Assessment Exercise(s) 
 
(1) What is the correct syntax for referring to an external script called 
"script.js"? 
a) <script src="script.js"></script> 
b) <script href="script.js"></script> 
c) <script ref="script.js"></script> 
d) <script name="script.js"></script> 
Answer: a) <script src="script.js"></script> 
 
(2) Which of the following is the correct way to declare a JavaScript 
variable? 
a) variable x; 
b) var x; 
c) v x; 
d) declare x; 
Answer: b) var x; 
 
(3) What will the following code output: console.log(typeof 42);? 
a) "number" 
b) "string" 
c) "boolean" 
d) "undefined" 
Answer: a) "number" 
 
(4) How do you create a function in JavaScript? 
a) function:myFunction() {} 
b) function myFunction() {} 
c) create myFunction() {} 
d) def myFunction() {} 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

224 

 

Answer: b) function myFunction() {} 
(5) Which event occurs when the user clicks on an HTML element? 
a) onmouseover 
b) onchange 
c) onclick 
d) onmouseclick 
Answer: c) onclick 
 
Conclusion 
 
Mastering the basics of JavaScript is a fundamental step towards 
becoming a proficient web developer. This unit has equipped you with 
essential knowledge and skills, such as understanding variables, data 
types, operators, control structures, functions, and events. With these 
tools, you can create interactive and dynamic web pages that respond 
to user actions, enhancing the overall user experience. By learning to 
manipulate the DOM and implement best practices for clean and 
efficient code, you are now prepared to tackle more advanced 
JavaScript concepts and projects. Continue practicing and 
experimenting with JavaScript to solidify your understanding and 
expand your capabilities in web development. 
 
 
 
   4.0 Summary 
 
The Basics of JavaScript unit provides a comprehensive introduction to 
the core concepts and syntax of JavaScript, a crucial programming 
language for creating interactive and dynamic web content. The unit 
covers fundamental topics including variables, data types, operators, 
control structures, functions, and events, all of which are essential for 
building responsive web applications. This foundational knowledge 
equips you to write basic JavaScript programs, integrate them into web 
pages, and follow best practices for clean, efficient code, laying the 
groundwork for more advanced studies in web development. 
 
 

 
5.0      References/Further Readings 

 
Zakas, N. C. (2011). Professional JavaScript for web developers. John 

Wiley & Sons. 
 
Hartl, M. (2022). Learn Enough JavaScript to Be Dangerous: A 

Tutorial Introduction to Programming with JavaScript. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

225 

 

Chen, E., & Asta, M. (2022). Using Jupyter tools to design an 
interactive textbook to guide undergraduate research in 
materials informatics. 

 
Abbas, S. H., Siddiqui, N., & Ali, S. (2021). Internet And Web 

Programming+ Projects. 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

226 

 

Unit 2  JavaScript Functions 
 
Contents 
 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 
3.0 Main Content 

3.1 Functions in JavaScript 
3.2 Function Declaration 
3.3 Evaluation of default parameters 
3.4 Naming a function 

4.0 Summary 
5.0 References/Further Readings 
 
 

 

1.0 Introduction 
 
JavaScript functions are fundamental building blocks in programming 
that enable developers to encapsulate code for reuse, modularity, and 
better organization. A function in JavaScript is a set of instructions that 
performs a specific task or calculates a value, which can be invoked as 
needed throughout the code. By defining a function once and reusing it 
multiple times, developers can write cleaner, more efficient, and more 
maintainable code. Functions not only help in reducing redundancy but 
also make the code easier to read and debug. Understanding how to 
create and utilize functions is essential for anyone looking to master 
JavaScript and build dynamic, interactive web applications. In this 
unit, we will delve into the various aspects of JavaScript functions, 
starting with the basics of function declaration and invocation. We will 
explore different types of functions, including named functions, 
anonymous functions, and arrow functions, each with its own unique 
syntax and use cases. 
 
 
 

2.0  Intended Learning Outcomes (ILOs) 
 
By the end of this unit, you will be able to: 
• discuss JavaScript functions 
• explain function Declaration 
• discussthe evaluation of default parameters 
• explain naming a function 

  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

227 

 

 
 

3.0  Main Content 
 
3.1 Functions in JavaScript 
 
JavaScript functions are essential for organizing code and executing 
specific tasks. They contain sets of instructions that run when triggered 
by events or actions. In this article, we’ll explore the syntax, 
parameters, return values, and execution contexts of JavaScript 
functions. Through practical examples, we’ll provide a clear 
understanding of how to use functions effectively in web development. 
A JavaScript function is executed when “something” invokes it (calls it). 
A basic JavaScript function, here we create a function that divides the 
1st element by the second element. 
function myFunction(g1, g2) { 
    return g1 / g2; 
} 
const value = myFunction(8, 2); // Calling the function 
console.log(value); 
You must already have seen some commonly used functions in 
JavaScript like alert(), which is a built-in function in JavaScript. But 
JavaScript allows us to create user-defined functions also. We can 
create functions in JavaScript using the keyword `function`. 
Quite often we need to perform a similar action in many places of the 
script. 
For example, we need to show a nice-looking message when a visitor 
logs in, logs out and maybe somewhere else. 
Functions are the main “building blocks” of the program. They allow 
the code to be called many times without repetition. 
We’ve already seen examples of built-in functions, 
like alert(message), prompt(message, default) and confirm(question). 
But we can create functions of our own as well. 
 
3.2 Function Declaration 
 
To create a function we can use a function declaration. 
It looks like this: 
function showMessage() { 
alert( 'Hello everyone!' ); 
} 
The function keyword goes first, then goes the name of the function, 
then a list of parameters between the parentheses (comma-separated, 
empty in the example above, we’ll see examples later) and finally the 
code of the function, also named “the function body”, between curly 
braces. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

228 

 

function name(parameter1, parameter2, ... parameterN) { 
 // body 
} 
Our new function can be called by its name: showMessage(). 
For instance: 
function showMessage() { 
alert( 'Hello everyone!' ); 
} 
 
showMessage(); 
showMessage(); 
The call showMessage() executes the code of the function. Here we 
will see the message two times. 
This example demonstrates one of the main purposes of functions: to 
avoid code duplication. 
If we ever need to change the message or the way it is shown, it’s 
enough to modify the code in one place: the function which outputs it. 
Local variables 
A variable declared inside a function is only visible inside that 
function. 
For example: 
function showMessage() { 
  let message = "Hello, I'm JavaScript!"; // local variable 
 
alert( message ); 
} 
 
showMessage(); // Hello, I'm JavaScript! 
 
alert( message ); // <-- Error! The variable is local to the function 
Outer variables 
A function can access an outer variable as well, for example: 
let userName = 'John'; 
 
function showMessage() { 
  let message = 'Hello, ' + userName; 
  alert(message); 
} 
 
showMessage(); // Hello, John 
The function has full access to the outer variable. It can modify it as 
well. 
For instance: 
let userName = 'John'; 
 
function showMessage() { 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

229 

 

  userName = "Bob"; // (1) changed the outer variable 
 
  let message = 'Hello, ' + userName; 
  alert(message); 
} 
 
alert( userName ); // John before the function call 
 
showMessage(); 
 
alert( userName ); // Bob, the value was modified by the function 
The outer variable is only used if there’s no local one. 
If a same-named variable is declared inside the function then 
it shadows the outer one. For instance, in the code below the function 
uses the local userName. The outer one is ignored: 
let userName = 'John'; 
 
function showMessage() { 
  let userName = "Bob"; // declare a local variable 
 
  let message = 'Hello, ' + userName; // Bob 
  alert(message); 
} 
 
// the function will create and use its own userName 
showMessage(); 
 
alert( userName ); // John, unchanged, the function did not access the 
outer variable 
 
Global variables 
Variables declared outside of any function, such as the 
outer userName in the code above, are called global. 
Global variables are visible from any function (unless shadowed by 
locals). 
It’s a good practice to minimize the use of global variables. Modern 
code has few or no globals. Most variables reside in their functions. 
Sometimes though, they can be useful to store project-level data. 
Parameters 
We can pass arbitrary data to functions using parameters. 
In the example below, the function has two parameters: from and text. 
function showMessage(from, text) { // parameters: from, text 
alert(from + ': ' + text); 
} 
 
showMessage('Ann', 'Hello!'); // Ann: Hello! (*) 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

230 

 

showMessage('Ann', "What's up?"); // Ann: What's up? (**) 
When the function is called in lines (*) and (**), the given values are 
copied to local variables from and text. Then the function uses them. 
Here’s one more example: we have a variable from and pass it to the 
function. Please note: the function changes from, but the change is not 
seen outside, because a function always gets a copy of the value: 
function showMessage(from, text) { 
 
  from = '*' + from + '*'; // make "from" look nicer 
 
alert( from + ': ' + text ); 
} 
 
let from = "Ann"; 
 
showMessage(from, "Hello"); // *Ann*: Hello 
 
// the value of "from" is the same, the function modified a local copy 
alert( from ); // Ann 
When a value is passed as a function parameter, it’s also called 
an argument. 
In other words, to put these terms straight: 
A parameter is the variable listed inside the parentheses in the function 
declaration (it’s a declaration time term). 
An argument is the value that is passed to the function when it is called 
(it’s a call time term). 
We declare functions listing their parameters, then call them passing 
arguments. 
In the example above, one might say: "the function showMessage is 
declared with two parameters, then called with two 
arguments: from and "Hello"". 
 
Default values 
If a function is called, but an argument is not provided, then the 
corresponding value becomes undefined. 
For instance, the aforementioned function showMessage(from, 
text) can be called with a single argument: 
showMessage("Ann"); 
That’s not an error. Such a call would output "*Ann*: undefined". As 
the value for text isn’t passed, it becomes undefined. 
We can specify the so-called “default” (to use if omitted) value for a 
parameter in the function declaration, using =: 
function showMessage(from, text = "no text given") { 
alert( from + ": " + text ); 
} 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

231 

 

showMessage("Ann"); // Ann: no text given 
Now if the text parameter is not passed, it will get the value "no text 
given". 
The default value also jumps in if the parameter exists, but strictly 
equals undefined, like this: 
showMessage("Ann", undefined); // Ann: no text given 
Here "no text given" is a string, but it can be a more complex 
expression, which is only evaluated and assigned if the parameter is 
missing. So, this is also possible: 
function showMessage(from, text = anotherFunction()) { 
  // anotherFunction() only executed if no text given 
  // its result becomes the value of text 
} 
3.3 Evaluation of default parameters 
 
In JavaScript, a default parameter is evaluated every time the function 
is called without the respective parameter. 
In the example above, anotherFunction() isn’t called at all, if 
the text parameter is provided. 
On the other hand, it’s independently called every time when text is 
missing. 
Default parameters in old JavaScript code 
Several years ago, JavaScript didn’t support the syntax for default 
parameters. So people used other ways to specify them. 
Nowadays, we can come across them in old scripts. 
For example, an explicit check for undefined: 
function showMessage(from, text) { 
  if (text === undefined) { 
    text = 'no text given'; 
  } 
 
alert( from + ": " + text ); 
} 
…Or using the || operator: 
function showMessage(from, text) { 
  // If the value of text is falsy, assign the default value 
  // this assumes that text == "" is the same as no text at all 
  text = text || 'no text given'; 
  ... 
} 
 
Alternative default parameters 
Sometimes it makes sense to assign default values for parameters at a 
later stage after the function declaration. 
We can check if the parameter is passed during the function execution, 
by comparing it with undefined: 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

232 

 

function showMessage(text) { 
  // ... 
 
  if (text === undefined) { // if the parameter is missing 
    text = 'empty message'; 
  } 
 
  alert(text); 
} 
 
showMessage(); // empty message 
…Or we could use the || operator: 
function showMessage(text) { 
  // if text is undefined or otherwise falsy, set it to 'empty' 
  text = text || 'empty'; 
  ... 
} 
Modern JavaScript engines support the nullish coalescing operator ??, 
it’s better when most falsy values, such as 0, should be considered 
“normal”: 
function showCount(count) { 
  // if count is undefined or null, show "unknown" 
alert(count ?? "unknown"); 
} 
 
showCount(0); // 0 
showCount(null); // unknown 
showCount(); // unknown 
Returning a value 
A function can return a value back into the calling code as the result. 
The simplest example would be a function that sums two values: 
function sum(a, b) { 
  return a + b; 
} 
 
let result = sum(1, 2); 
alert( result ); // 3 
The directive return can be in any place of the function. When the 
execution reaches it, the function stops, and the value is returned to the 
calling code (assigned to result above). 
There may be many occurrences of return in a single function. For 
instance: 
function checkAge(age) { 
  if (age >= 18) { 
    return true; 
  } else { 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

233 

 

    return confirm('Do you have permission from your parents?'); 
  } 
} 
 
let age = prompt('How old are you?', 18); 
 
if ( checkAge(age) ) { 
alert( 'Access granted' ); 
} else { 
alert( 'Access denied' ); 
} 
It is possible to use return without a value. That causes the function to 
exit immediately. 
For example: 
function showMovie(age) { 
  if ( !checkAge(age) ) { 
    return; 
  } 
 
alert( "Showing you the movie" ); // (*) 
  // ... 
} 
In the code above, if checkAge(age) returns false, 
then showMovie won’t proceed to the alert. 
A function with an empty return or without it returns undefined 
If a function does not return a value, it is the same as if it 
returns undefined: 
function doNothing() { /* empty */ } 
 
alert( doNothing() === undefined ); // true 
An empty return is also the same as return undefined: 
function doNothing() { 
  return; 
} 
 
alert( doNothing() === undefined ); // true 
Never add a newline between return and the value 
For a long expression in return, it might be tempting to put it on a 
separate line, like this: 
return 
 (some + long + expression + or + whatever * f(a) + f(b)) 
That doesn’t work, because JavaScript assumes a semicolon 
after return. That’ll work the same as: 
return; 
 (some + long + expression + or + whatever * f(a) + f(b)) 
So, it effectively becomes an empty return. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

234 

 

If we want the returned expression to wrap across multiple lines, we 
should start it at the same line as return. Or at least put the opening 
parentheses there as follows: 
return ( 
  some + long + expression 
  + or + 
  whatever * f(a) + f(b) 
  ) 
And it will work just as we expect it to. 
 
3.4 Naming a function 
 
Functions are actions. So their name is usually a verb. It should be 
brief, as accurate as possible and describe what the function does, so 
that someone reading the code gets an indication of what the function 
does. 
It is a widespread practice to start a function with a verbal prefix which 
vaguely describes the action. There must be an agreement within the 
team on the meaning of the prefixes. 
For instance, functions that start with "show" usually show something. 
Function starting with… 
"get…" – return a value, 
"calc…" – calculate something, 
"create…" – create something, 
"check…" – check something and return a boolean, etc. 
Examples of such names: 
showMessage(..)     // shows a message 
getAge(..)          // returns the age (gets it somehow) 
calcSum(..)         // calculates a sum and returns the result 
createForm(..)      // creates a form (and usually returns it) 
checkPermission(..) // checks a permission, returns true/false 
With prefixes in place, a glance at a function name gives an 
understanding what kind of work it does and what kind of value it 
returns. 
One function – one action 
A function should do exactly what is suggested by its name, no more. 
Two independent actions usually deserve two functions, even if they 
are usually called together (in that case we can make a 3rd function 
that calls those two). 
A few examples of breaking this rule: 
getAge – would be bad if it shows an alert with the age (should only 
get). 
createForm – would be bad if it modifies the document, adding a form 
to it (should only create it and return). 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

235 

 

checkPermission – would be bad if it displays the access 
granted/denied message (should only perform the check and return the 
result). 
These examples assume common meanings of prefixes. You and your 
team are free to agree on other meanings, but usually they’re not much 
different. In any case, you should have a firm understanding of what a 
prefix means, what a prefixed function can and cannot do. All same-
prefixed functions should obey the rules. And the team should share 
the knowledge. 
Ultrashort function names 
Functions that are used very often sometimes have ultrashort names. 
For example, the jQuery framework defines a function with $. 
The Lodash library has its core function named _. 
These are exceptions. Generally function names should be concise and 
descriptive. 
Functions == Comments 
Functions should be short and do exactly one thing. If that thing is big, 
maybe it’s worth it to split the function into a few smaller functions. 
Sometimes following this rule may not be that easy, but it’s definitely 
a good thing. 
A separate function is not only easier to test and debug – its very 
existence is a great comment! 
For instance, compare the two functions showPrimes(n) below. Each 
one outputs prime numbers up to n. 
The first variant uses a label: 
function showPrimes(n) { 
  nextPrime: for (let i = 2; i < n; i++) { 
 
    for (let j = 2; j < i; j++) { 
      if (i % j == 0) continue nextPrime; 
    } 
 
alert( i ); // a prime 
  } 
} 
The second variant uses an additional function isPrime(n) to test for 
primality: 
function showPrimes(n) { 
 
  for (let i = 2; i < n; i++) { 
    if (!isPrime(i)) continue; 
 
    alert(i);  // a prime 
  } 
} 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

236 

 

function isPrime(n) { 
  for (let i = 2; i < n; i++) { 
    if ( n % i == 0) return false; 
  } 
  return true; 
} 
The second variant is easier to understand, isn’t it? Instead of the code 
piece, we see the name of the action (isPrime). Sometimes people refer 
to such code as self-describing. 
So, functions can be created even if we don’t intend to reuse them. 
They structure the code and make it readable. 
 
Self-Assessment Exercise(s) 
 
(1) What is the correct way to define a function in JavaScript? 
A) function myFunction = {} 
B) function myFunction() {} 
C) def myFunction() {} 
D) function: myFunction() {} 
Answer: B) function myFunction() {} 
 
(2) Which of the following is a characteristic of an arrow function in 
JavaScript? 
A) It must have a name. 
B) It cannot be assigned to a variable. 
C) It inherits this value from the enclosing scope. 
D) It requires the function keyword. 
Answer: C) It inherits this value from the enclosing scope. 
 
(3) What will be the output of the following code snippet? 
javascript 
Copy code 
function greet() { 
return "Hello, World!"; 
} 
console.log(greet()); 
A) Hello 
B) World 
C) Hello, World! 
D) undefined 
Answer: C) Hello, World! 
 
(4) Which of the following statements is true about closures in 
JavaScript? 
A) Closures are used to define global variables. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

237 

 

B) A closure is a function that has access to its scope, the scope of the 
outer function, and the global scope. 
C) Closures cannot access variables outside of their function scope. 
D) Closures are only used with arrow functions. 
 
Answer: B) A closure is a function that has access to its scope, the 
scope of the outer function, and the global scope. 
(5) What is a higher-order function in JavaScript? 
A) A function that can only be called once. 
B) A function that returns another function or takes one or more 
functions as arguments. 
C) A function that executes immediately after its definition. 
D) A function that cannot be assigned to a variable. 
 
Answer: B) A function that returns another function or takes one or 
more functions as arguments. 
 
Conclusion 
Mastering JavaScript functions is crucial for developing robust and 
efficient web applications. Functions enable you to write modular, 
reusable, and maintainable code, which is essential for handling 
complex programming tasks. By understanding different types of 
functions, such as name, anonymous, and arrow functions, and key 
concepts like scope, closures, and higher-order functions, you can 
leverage the full power of JavaScript to create dynamic and interactive 
user experiences. As you continue to practice and apply these concepts, 
you'll become more proficient in writing clean and effective code, 
significantly enhancing your programming skills and capabilities. 
 
  
            4.0 Summary 
 
A function declaration looks like this: 
function name(parameters, delimited, by, comma) { 
  /* code */ 
} 
Values passed to a function as parameters are copied to its local 
variables. 
A function may access outer variables. But it works only from the 
inside out. The code outside of the function doesn’t see its local 
variables. 
A function can return a value. If it doesn’t, then its result is undefined. 
To make the code clean and easy to understand, it’s recommended to 
use mainly local variables and parameters in the function, not outer 
variables. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

238 

 

It is always easier to understand a function that gets parameters, works 
with them, and returns a result than a function that gets no parameters, 
but modifies outer variables as a side effect. 
Function naming: 
A name should clearly describe what the function does. When we see a 
function call in the code, a good name instantly gives us an 
understanding of what it does and returns. 
 
A function is an action, so function names are usually verbal. 
There exist many well-known function prefixes 
like create…, show…, get…, check…, and so on. Use them to hint at 
what a function does. 
 
Functions are the main building blocks of scripts. Now we’ve covered 
the basics, so we actually can start creating and using them. But that’s 
only the beginning of the path. We are going to return to them many 
times, going more deeply into their advanced features. 
 
 
             
          5.0  References/Further Reading 
 
Zakas, N. C. (2011). Professional JavaScript for web developers. John 

Wiley & Sons. 
 
Hartl, M. (2022). Learn Enough JavaScript to Be Dangerous: A 

Tutorial Introduction to Programming with JavaScript. 
 
Chen, E., & Asta, M. (2022). Using Jupyter tools to design an 

interactive textbook to guide undergraduate research in 
materials informatics. 

 
Abbas, S. H., Siddiqui, N., & Ali, S. (2021). Internet And Web 

Programming+ Projects. 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

239 

 

Unit 3  Document Object Model (DOM) Manipulation 
 
Contents 
 
1.0 Introduction 
2.0 Intended Learning Outcomes (ILOs) 
3.0 Main Content 

3.1 Foundation of DOM manipulation 
3.2 Select Elements in the DOM 
3.3 Create a New Element 
3.4 Working with Events 
3.5 Working with Events 
3.6 DOM Events 
3.7 Security and DOM 

4.0 Summary 
5.0 References/Further Reading 
 
 
 

1.0    Introduction 
 
The Document Object Model (DOM) is a crucial concept in web 
development, serving as the bridge between web pages and the 
programming languages that manipulate them. At its core, the DOM is 
a programming interface for HTML and XML documents. It represents 
the structure of a document as a tree of nodes, where each node 
corresponds to a part of the document, such as an element, attribute, or 
piece of text. This hierarchical model allows developers to 
programmatically access and modify the content, structure, and styling 
of web pages, making dynamic and interactive user experiences 
possible. DOM manipulation involves using scripting languages like 
JavaScript to interact with the DOM. By targeting specific nodes 
within the DOM, developers can change how a webpage appears and 
behaves without needing to reload the page. This capability is 
fundamental to creating responsive and interactive web applications. 
For instance, DOM manipulation can be used to update the content of a 
page based on user input, animate elements, handle events, and more. 
Understanding how to efficiently navigate and alter the DOM is 
essential for modern web development, enabling developers to build 
sophisticated, user-friendly interfaces. 
 
 
 
  



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

240 

 

 
 

2.0  Intended Learning Outcomes (ILOs) 
 
By the end of this unit, you will be able to: 
• discuss the foundation of DOM manipulation 
• explain select elements in the DOM 
• discuss creating a new element 
• explain DOM events 

 
 
         3.0 Main Content 
 
3.1 Foundation of DOM manipulation 
 
DOM manipulation in JavaScript is an important factor while creating 
a web application using HTML and JavaScript. It is the process of 
interacting with the DOM API to change or modify an HTML 
document that will be displayed in a web browser. This HTML 
document can be changed to add or remove elements, update existing 
elements, rearrange existing elements, etc. 
 
By manipulating the DOM, we can create web applications that update 
the data in a web page without refreshing the page and can change its 
layout without doing a refresh. Throughout the document, items can be 
deleted, moved, or rearranged. 
 
Definition of the DOM and Basic concepts 
The DOM in DOM manipulation in javascript stands for Document 
Object Model. The Document Object Model (DOM) is a tree-like 
structure illustrating the hierarchical relationship between various 
HTML elements. It can be easily explained as a tree of nodes generated 
by the browser. Each node has unique properties and methods that can 
be changed using JavaScript. 
 
A visual representation of the DOM tree is shown in the image below. 
 
 
 
 
 
 
 
 
 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

241 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The document is the core/foundation of the DOM. 
HTML  root element is the child of the document object. 
Body and Head elements are the children of the HTML element and 
siblings to each other. 
The title element is the parent to the text node: "my text” and the child 
of the head element. 
a tag and h1 tag are the children of the body element and siblings to 
each other. 
href attribute is the children of the a(anchor) tag. 
The DOM is referred to as a programming API for XML and HTML 
documents. DOM defines the logical structure of documents and the 
methods for accessing and changing them are specified by the DOM. 
A few Points to Keep in Mind 
• A node can have more than one child. 
• Siblings are nodes with the same parent like brothers or sisters. 
• Except for the top node, which has no parent, each node has 

exactly one parent. 
 
3.2 How to Select Elements in the DOM 
 
To change or modify an element in the DOM, you need to select that 
specific element. Thus, JavaScript has six methods to select an element 
from a document in dom manipulation in javascript. 
• getElementById: returns an element whose id matches a passed 

string. Since the ids of elements are unique, this is the fastest 
way to select an element. 

• getElementsByTagName: returns a collection of all the 
elements present in the document that have the specified tag 
name, in the order of their appearance in the document. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

242 

 

• getElementsByClassName: returns an HTMLCollection of 
elements that match the passed class name. Bypassing the class 
names separated by whitespace, we can search for multiple class 
names. 

• getElementsByName: returns a NodeList Collection of the 
elements that match the value of the name attribute with the 
passed string. 

• querySelector: returns the very first element within the 
document that matches the given selector. It only returns the 
element that matches with one of the specified CSS selectors, or 
a group of selectors. 

• querySelectorAll: returns a static NodeList of elements that 
matches with one or a group of selectors. If no element matches, 
an empty NodeList is returned. 

 
How to Traverse and Move around the DOM 
With the HTML DOM, we can navigate through the tree nodes and 
access them using node relationships that we have discussed earlier 
parent, children, siblings, etc. 
 
In this section, we will learn how to get the parent element, and 
children of an element, and siblings of an element. 
 
Get the Parent Element 
To get the parent node of a particular node in the DOM tree, we can 
use the parentNode property. for example, 
let parent = node.parentNode; 
ParentNode is a read-only object. There is no parent for the Document 
and DocumentFragment nodes. As a result, the parentNode is always 
empty. The parentNode of a newly created node that hasn't been 
connected to the DOM tree will also be null. 
Get Child Elements 
To Get all child elements use the firstChild  property that returns the 
first child element of a specified element. 
let firstChild = parentElement.firstChild;  
To Get the last child element use the lastChild property that returns 
the first element node, text node, or comment node. 
let lastChild = parentElement.lastChild;  
To Get all child elements use the childNodes property that returns a 
live NodeList of child elements of a specified element. 
let children = parentElement.childNodes; 
Get Siblings of an Element 
To Get the next siblings use the nextElementSibling property 
let nextSibling = currentNode.nextElementSibling; 
To Get the previous siblings use  
the previousElementSibling property. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

243 

 

let current = document.querySelector('.current'); 
let prevSibling = currentNode.previousElementSibling;  
How to Manipulate Elements in the DOM 
 
3.3 Create a New Element 
 
The document.createElement() returns a new Node with the Element 
type. It takes an HTML tag name as a parameter. 
let div = document.createElement('div'); 
Get and Set the Text Content of a Node 
The textContent property returns the concatenation of the textContent 
of all child nodes and does not include the comments. 
let text = node.textContent; 
Get and Set the HTML Content of an Element 
The innerHTML is a property of the Element that allows us to get or 
set the HTML markup contained within the element. 
element.innerHTML = 'new content'; 
Append a Node to a List of Child Nodes of a Particular Parent Node 
The appendChild() method allows us to insert a node at the end of the 
list of child nodes of a particular parent node. 
parentNode.appendChild(childNode); 
Insert One Element Before an Existing Node as a Child Node of a 
Specified Parent Node 
The insertBefore() JavaScript method takes two parameters, the 
newNode, and the existingNode. insertBefore() returns the inserted 
child node. 
parentNode.insertBefore(newNode, existingNode); 
Replace a Child Element by a New Element 
The replaceChild() JavaScript method takes two parameters to replace 
our first element with the newly created one. 
parentNode.replaceChild(newChild, oldChild); 
Remove Child Elements of a Node 
The removeChild() JavaScript method takes just one parameter i.e the 
element you want to remove. 
let childNode = parentNode.removeChild(childNode); 
Clone an Element and All of Its Descendants 
This method allows us to clone an element. The cloneNode() method 
takes an optional parameter deep. If the deep is true, then the original 
node and all of its descendants are already cloned, false otherwise. 
let clonedNode = originalNode.cloneNode(deep); 
 
3.4 Working with Events 
 
Here are some events used in dom manipulation in javascript: 
• Handling events: includes HTML event handler attribute, 

element’s event handler property, and addEventListener(). 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

244 

 

• Page Load Events: includes DOMContentLoaded, load, 
beforeunload, and unload. 

• load event: includes dependent resources like JavaScript files, 
CSS files, and images. 

• Unload event: The unload event is fired after before unload 
event and pagehide event. 

• Mouse events: includes mousedown, mouseup, and click. 
• Keyboard events: includes keydown, keypress, and keyup. 
 
Scroll events: includes scrollX and scrollY properties that returns the 
number of pixels that the document is currently scrolled horizontally 
and vertically. 
 
Manipulating Element’s Styles 
style property 
The style property returns the read-only CSSStyleDeclaration object 
that includes a list of CSS properties. 
element.style.color = 'red'; 
getComputedStyle() 
The getComputedStyle() method returns the object that contains the 
computed style of an element. 
element.style.color = 'red'; 
className Property 
The className property returns a space-separated list of CSS classes 
of the element as a string. 
element.className 
classList Property 
The classList returns a live collection of CSS classes. It is a read-only 
property of an element. 
const classes = element.classList; 
Event Handling in the DOM 
Since the beginning of the language, event handling has been a part of 
dom manipulation in javascript.  They correspond to specific, user-
imitated actions within the webpage, such as the moving of your 
mouse over a link, clicking on a link, or submitting a form. Thanks to 
event handling, our scripts are more interactive and are able to perform 
certain actions depending on the users. 
The DOM of modern web browsers such as NS6+, IE5+, and Firefox 
provide expanded methods and flexibility for capturing events. 
 
3.5 Scripting Web Forms 
 
JavaScript Form 
To create a form in HTML, you use the <form> element, for example 
<!DOCTYPE html> 
<html lang="en"> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

245 

 

<head> 
<title>JavaScript Form Demo</title> 
<meta name="viewport" content="width=device-width, initial-
scale=1.0" /> 
<link rel="stylesheet" href="css/style.css" /> 
</head> 
<body> 
<div class="container"> 
<form action="signup.html" method="post" id="signup"> 
<h1>Sign Up</h1> 
<div class="field"> 
<label for="name">Name:</label> 
<input type="text" id="name" name="name" placeholder="Enter your 
fullname" /> 
<small></small> 
</div> 
<div class="field"> 
<label for="email">Email:</label> 
<input type="text" id="email" name="email" placeholder="Enter your 
email address" /> 
<small></small> 
</div> 
<div class="field"> 
<button type="submit" class="full">Subscribe</button> 
</div> 
</form> 
</div> 
<script> 
            // show a message with a type of the input 
    function showMessage(input, message, type) { 
    // get the small element and set the message 
    const msg = input.parentNode.querySelector("small"); 
msg.innerText = message; 
    // update the class for the input 
input.className = type ? "success": "error"; 
    return type; 
    } 
 
    function showError(input, message) { 
    return showMessage(input, message, false); 
    } 
    function showSuccess(input) { 
    return showMessage(input, "", true); 
    } 
    function hasValue(input, message) { 
    if (input.value.trim() === "") { 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

246 

 

       return showError(input, message); 
    } 
    return showSuccess(input); 
    } 
 
    function validateEmail(input, requiredMsg, invalidMsg) { 
    // check if the value is not empty 
    if (!hasValue(input, requiredMsg)) { 
        return false; 
    } 
    // validate email format 
    const emailRegex = (".+"))@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-
9]{1,3}\.[0-9]{1,3}\]) 
 
    const email = input.value.trim(); 
    if (!emailRegex.test(email)) { 
        return showError(input, invalidMsg); 
    } 
    return true; 
    } 
 
    const form = document.querySelector("#signup"); 
 
    const NAME_REQUIRED = "Please enter your name"; 
    const EMAIL_REQUIRED = "Please enter your email"; 
    const EMAIL_INVALID = "Please enter a correct email address 
format"; 
 
form.addEventListener("submit", function (event) { 
    // stop form submission 
event.preventDefault(); 
 
    // validate the form 
    let nameValid = hasValue(form.elements["name"], 
NAME_REQUIRED); 
    let emailValid = validateEmail(form.elements["email"], 
EMAIL_REQUIRED, EMAIL_INVALID); 
    // if valid, submit the form. 
    if (nameValid && emailValid) { 
alert("Demo only. No form was posted."); 
    } 
    }); 
 
 
</script> 
</body> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

247 

 

</html> 
 
Output  
 
 
 
 
 
 
 
 
 
 
 
Radio Button 
To know which radio button is checked, we need to use the value 
attribute, For example 
<!DOCTYPE html> 
<html lang="en"> 
<head> 
<meta charset="UTF-8"> 
<meta name="viewport" content="width=device-width, initial-
scale=1.0"> 
<title>JavaScript Radio Button</title> 
</head> 
<body> 
<p>Select your size:</p> 
<div> 
<input type="radio" name="size" value="XS" id="xs"> 
<label for="xs">XS</label> 
</div> 
<div> 
<input type="radio" name="size" value="S" id="s"> 
<label for="s">S</label> 
</div> 
<div> 
<input type="radio" name="size" value="M" id="m"> 
<label for="m">M</label> 
</div> 
<div> 
<input type="radio" name="size" value="L" id="l"> 
<label for="l">L</label> 
</div> 
<div> 
<input type="radio" name="size" value="XL" id="xl"> 
<label for="xl">XL</label> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

248 

 

</div> 
<div> 
<input type="radio" name="size" value="XXL" id="xxl"> 
<label for="xxl">XXL</label> 
</div> 
<p> 
<button id="btn">Show Selected Value</button> 
</p> 
 
<p id="output"></p> 
 
<script> 
        const btn = document.querySelector('#btn');         
        const radioButtons = 
document.querySelectorAll('input[name="size"]'); 
btn.addEventListener("click", () => { 
            let selectedSize; 
            for (const radioButton of radioButtons) { 
                if (radioButton.checked) { 
                    selectedSize = radioButton.value; 
                    break; 
                } 
            } 
            // show the output: 
output.innerText = selectedSize ? `You selected ${selectedSize}` : 
`You haven't selected any size`; 
        }); 
</script> 
</body> 
</html> 
Output  
 
 
 
 
 
 
 
 
 
 
 
 
 
Checkbox 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

249 

 

To create a checkbox, you use the <input> element with the type of 
checkbox, for example 
<!DOCTYPE html> 
<html lang="en"> 
 
<head> 
<meta charset="UTF-8"> 
<meta name="viewport" content="width=device-width, initial-
scale=1.0"> 
<title>JavaScript Checkbox</title> 
</head> 
 
<body> 
<label for="accept"> 
<input type="checkbox" id="accept" name="accept"> Accept 
</label> 
 
<button id="btn">Submit</button> 
<script> 
        const cb = document.querySelector('#accept'); 
        const btn = document.querySelector('#btn'); 
btn.onclick = () => { 
           alert(cb.value); 
        }; 
</script> 
</body> 
 
</html> 
Output  
 
 
 
 
 
 
 
 
Select Box 
To create a <select> element, you use 
the <select> and <option> elements. For example: 
<select id="framework"> 
<option value="1">Angular</option> 
<option value="2">React</option> 
<option value="3">Vue.js</option> 
<option value="4">Ember.js</option> 
</select> 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

250 

 

Output  
 
 
 
 
 
 
Handling Input Event 
The input event fires each time whenever the value of 
the <input>, <select>, or <textarea> element updates. 
<!DOCTYPE html> 
<html lang="en"> 
<head> 
<meta charset="UTF-8"> 
<meta name="viewport" content="width=device-width, initial-
scale=1.0"> 
<title>JavaScript input Event Demo</title> 
</head> 
<body> 
<label for="message">Message</label> 
<input placeholder="Enter some text" id="message" 
name="message"> 
<p id="result"></p> 
<script> 
        const message = document.querySelector('#message'); 
        const result = document.querySelector('#result'); 
message.addEventListener('input', function () { 
result.textContent = this.value; 
        }); 
</script> 
</body> 
</html> 
Output  
 
 
 
 
 
 
 
 
 
Web developers can perform DOM manipulation using JavaScript. 
This includes dynamically changing page content, adding new 
elements, removing existing elements, and updating style properties. 
Changing Element Content: 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

251 

 

We can use innerHTML or textContent properties to change the text 
content of an element within the DOM. 
var element = document.getElementById("myElementId"); 
element.innerHTML = "New content"; // or element.textContent = 
"New content"; 
 
3.6 DOM Events 
 
Interactions on web pages are carried out using events to enable users 
to interact with the page. Events represent interactions such as a user 
clicking a mouse, pressing a key, submitting a form, etc. Using 
JavaScript, we can listen for these events and react to user interactions. 
Event Listeners: 
We can use the addEventListener() function to listen for a specific 
event. For example, to listen for a button click event: 
var button = document.getElementById("myButton"); 
button.addEventListener("click", function() { 
    // Actions to be taken when a click event occurs 
}); 
Common Events: 
click:  For click on an item. 
mouseover and mouseout: For hover over and move away from an 
element. 
keydown and keyup: For pressing a key and for it to work when you 
unclick it. 
 
submit: For submit a form. 
Event Object: 
Event listeners receive an event object containing information about 
the event when it occurs. This object contains information such as the 
type of the event, its target, and key information. 
 
Thanks to event listeners, you can make your web page responsive to 
user interactions and improve the user experience. 
 
Asynchronous DOM Operations 
In modern web applications, it is common to retrieve data from the 
server and update it in the DOM to dynamically update pages. Such 
operations must be performed asynchronously. Asynchronous 
operations allow the page to continue without being blocked by other 
operations, so the page remains responsive and user-friendly during 
user interactions. 
Asynchronous Data Retrieval with Fetch API: 
The Fetch API is a new asynchronous data retrieval method used in 
modern browsers. It attracts attention with its easier use and promise-
based structure. 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

252 

 

fetch("data.json") 
  .then(response => response.json()) 
  .then(data => { 
    // Using data within the DOM 
  }) 
  .catch(error => { 
    console.error("Error: ", error); 
  }); 
Asynchronous DOM Update: 
It is possible to update the DOM content using data received 
asynchronously. For example, we can populate a list asynchronously. 
fetch("data.json") 
  .then(response => response.json()) 
  .then(data => { 
    var list = document.getElementById("myList"); 
    data.forEach(item => { 
      var listItem = document.createElement("li"); 
      listItem.textContent = item.text; 
      list.appendChild(listItem); 
    }); 
  }) 
  .catch(error => { 
    console.error("Error: ", error); 
  }); 
 
3.7 Security and DOM 
 
Security is an important factor when performing DOM manipulation. 
Malicious users may attempt to manipulate web pages for malicious 
purposes. Therefore, you must take some precautions to ensure safety. 
XSS (Cross-Site Scripting) Attacks: 
XSS attacks occur when malicious users inject JavaScript code on the 
page. In this case, it is important to process user data securely and 
expose external data securely. 
 
Adding Data via Secure Ways: 
Safe methods such as textContent or createElement should be used 
when adding user input into the DOM. You should not include user 
data directly with innerHTML containing it. 
Using CSP (Content Security Policy): 
CSP is used to control where the page’s resources can be loaded from. 
CSP can help prevent XSS attacks and data leaks. CSP policies can be 
specified in the page title or in HTTP responses. 
Event Listeners with Secure Methods: 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

253 

 

When listening to user interactions, addEventListener should be used 
instead of features like onclick or onmouseover. This helps manage 
interactions on the DOM more securely. 
DOM is a fundamental concept in the world of modern web 
development. DOM, a tool used to make pages dynamic and 
interactive, is the primary way to interact with web browsers. DOM 
represents HTML and XML documents as a tree structure, which treats 
each element in web pages as an object. Changes made to these objects 
make it possible to update the content of the web page, add new 
elements, remove existing ones, and listen to interactions. Using the 
DOM correctly and securely is the key to developing powerful and 
effective web applications. 
 
Self-Assessment Exercise(s) 
 
(1) What does the Document Object Model (DOM) represent in a web 
document? 
A) The style of the document 
B) The structure of the document as a tree of nodes 
C) The server-side scripts of the document 
D) The user interactions with the document 
Answer: B) The structure of the document as a tree of nodes 
(2) Which of the following methods is used to select an element by its 
ID in the DOM? 
A) document.getElementsByClassName 
B) document.getElementsByTagName 
C) document.getElementById 
D) document.querySelectorAll 
Answer: C) document.getElementById 
(3) What is the correct way to change the text content of an HTML 
element with the id "header" to "Welcome"? 
A) document.getElementById("header").innerHTML = "Welcome"; 
B) document.getElementById("header").value = "Welcome"; 
C) document.getElementById("header").text = "Welcome"; 
D) document.getElementById("header").innerText = "Welcome"; 
Answer: D) document.getElementById("header").innerText = 
"Welcome"; 
(4) Which DOM method is used to create a new HTML element? 
A) document.createElement() 
B) document.newElement() 
C) document.appendChild() 
D) document.createNode() 
Answer: A) document.createElement() 
(5) How can you add a new class to an existing HTML element using 
JavaScript? 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

254 

 

A) element.setAttribute("class", "new-class"); 
B) element.className += " new-class"; 
C) element.classList.add("new-class"); 
D) element.addClass("new-class"); 
Answer: C) element.classList.add("new-class"); 
 
Conclusion 
Mastering Document Object Model (DOM) manipulation empowers 
developers to create dynamic and interactive web experiences. By 
understanding how to access, modify, and update elements within the 
DOM tree, developers can breathe life into static web pages, enabling 
them to respond dynamically to user input and events. Through 
techniques such as selecting elements, changing their attributes, and 
manipulating their content, developers can craft seamless user 
interfaces and enhance the overall user experience. However, it's 
crucial to maintain code readability, performance, and accessibility 
while implementing DOM manipulation to ensure scalability and 
compatibility across various browsers and devices. Embracing best 
practices and staying updated with emerging technologies will further 
solidify developers' mastery of DOM manipulation, enabling them to 
build robust and engaging web applications for diverse audiences. 
 
 
 
 4.0 Summary 
 
The Document Object Model (DOM) Manipulation unit focuses on the 
essential concept of interacting with web documents through 
JavaScript. It delves into how web browsers construct a tree-like 
representation of HTML documents, where each element, attribute, and 
text node is a part of the hierarchy. Through DOM manipulation, 
developers gain the ability to dynamically modify this structure, 
enabling them to create interactive and responsive web applications. 
The unit covers various techniques for traversing the DOM tree, 
accessing and modifying elements, handling events, and updating 
content in real-time. By mastering DOM manipulation, developers can 
create dynamic web experiences that respond to user actions and inputs 
effectively. Furthermore, the unit explores best practices and common 
challenges associated with DOM manipulation. It emphasizes the 
importance of performance optimization and efficient code 
organization to ensure smooth user experiences, especially in complex 
applications. Additionally, the unit discusses cross-browser 
compatibility issues and techniques for writing code that works 
seamlessly across different web browsers. Understanding DOM 
manipulation is crucial for web developers as it forms the foundation 
for building interactive and engaging web applications, empowering 



IFT 203       INTRODUCTION TO WEB TECHNOLOGIES 
 

255 

 

them to create dynamic content and enhance user interactions on the 
web. 
 
 
 
    5.0 References/Further Readings 
 
Goodman, D. (2002). Dynamic HTML: The definitive reference: A 

comprehensive resource for HTML, CSS, DOM & JavaScript. " 
O'Reilly Media, Inc.". 

 
Aggarwal, S. (2018). Modern web-development using 

reactjs. International Journal of Recent Research Aspects, 5(1), 
133-137. 

 
Harold, E. R., & Means, W. S. (2004). XML in a nutshell: a desktop 

quick reference. " O'Reilly Media, Inc.". 
 
Maruyama, H. (2002). XML and Java: developing Web applications. 

Addison-Wesley Professional. 
 
Dournaee, B., & Dournee, B. (2002). XML security (pp. 107-278). 

New York: Mcgraw-hill. 


	Microsoft Word - IFT 203COURSE GUIDE.pdf
	Microsoft Word - IFT CONTENTS.pdf
	Microsoft Word - IFT 203 Introduction to Web Technologies.pdf



